Смекни!
smekni.com

Живая геометрия (стр. 3 из 8)

Перевернем дугу циклоиды, изображенной на рисунке, выпуклостью вниз и представим себе, что это гладкая кривая на вертикальной плоскости. Тогда, в какую бы точку этой кривой мы не помещали тяжелую частицу (материальное точку), она скатиться на «дно» - достигнет наинизшей точки кривой – за одно и тоже время. Это свойство циклоиды навело величайшего голландского физика и математика Христиана Гюйгенса (1629-1695) на мысль использовать циклоиду, на которую при качании наматывалась бы нить маятника, в надежде что это позволит добиться изохронности колебаний. Если нить натянуть вдоль циклоиды, а затем отпустить, то любая точка нити опишет циклоиду. Гюйгенс считал, что если грузик маятника будет вынужден двигаться по дуге циклоиды, то продолжительность колебаний маятника станет одинаковой. Построенные Гюйгенсом часы (первые маятниковые часы) шли не очень точно, и от них вскоре отказались, но сама идея была необычайно остроумной.

Спирали приводили древних математиков в восторг. Мы рассмотрим спираль Архимеда и равноугольную, или логарифмическую спираль.

Под спиралью мы понимаем плоскую кривую, которую опишет точка, совершая круги и одновременно удаляясь от некоторой неподвижной точки, называемой полюсом. Спираль Архимеда, названная так потому, что Архимед описал ее в своей работе о спиралях, имеет очень простое уравнение в полярных координатах: r = aΰ.

Предположим, что муха ползет с постоянной скоростью вдоль прямой ОР, равномерно вращающейся вокруг полюса О. Тогда путь мухи на плоскости будет иметь вид спирали Архимеда. Такую спираль проще всего вычерчивать на специальной бумаге с нанесенной сеткой полярных координат (рис. 3).

Спираль Архимеда состоит из бесконечно многих витков. Она начинается в центре циферблата и все более и более удаляется от него по мере того, как растет число оборотов. На рис.4 изображены первый виток и часть второго [20].

Вы, наверное, слышали, что с помощью циркуля и линейки невозможно разделить на три равные части наудачу взятый угол (в частных случаях, когда угол содержит, например, 180°, 135° или 90°, эта задача легко решается). А вот если пользоваться аккуратно начерченной архимедовой спиралью, то любой угол можно разделить на какое угодно число равных частей.


Разделим, например, угол АОВ на три равные части (рис. 5). Если считать, что стрелка повернулась как раз на этот угол, то жучок будет находиться ,в точке N на стороне угла. Но когда угол поворота был втрое меньше, то и муха был втрое ближе к центру О. Чтобы найти это его положение, разделим сначала отрезок ОN на три равные части. Это можно сделать с помощью циркуля и линейки. Получим отрезок ОN1, длина которого втрое меньше, чем ОN. Чтобы вернуть жучка на спираль, нужно сделать засечку этой кривой радиусом ОN1 (снова циркуль!). Получим точку М. Угол AOМ и будет втрое меньше угла АОN.

Самого Архимеда занимали, однако, другие, более трудные задачи, которые он сам поставил и решил: 1) найти площадь фигуры, ограниченной первым витком спирали (на рис. 4 она заштрихована); 2) получить способ построения касательной к спирали в какой-либо ее точке N.

Замечательно, что обе задачи представляют собой самые ранние примеры задач, относящихся к математическому анализу. Начиная с XVII в., площади фигур вычисляются математиками с помощью интеграла, а касательные проводятся с помощью производных. Поэтому Архимеда можно назвать предшественником математического анализа.


Для первой из названных задач мы просто укажем результат, полученный Архимедом: площадь фигуры составляет точно 1/3 площади круга радиуса ОА. Для второй задачи можно показать ход ее решения, несколько упростив при этом рассуждения самого Архимеда. Все дело в том, что скорость, с которой жучок описывает спираль, в каждой точке N направлена по касательной к спирали в этой точке. Если будем знать, как направлена эта скорость, то и касательную построим.

Но движение мухи в точке N складывается из двух различных движений (рис. 6); одно—по направлению стрелки со скоростью υ (см/с), а другое—вращательное по окружности с центром в О и радиусом ОN. Чтобы представить последнее, допустим, что муха замерла на мгновенье в точке N. Тогда он будет уноситься вместе со стрелкой по окружности радиуса ON. Скорость последнего вращательного движения направлена по касательной к окружности. А какова ее величина? Если бы муха могла описать полную окружность радиуса ОN, то за 60 секунд он проделал бы путь, равный 2π ОN. Так как скорость при этом оставалась бы постоянной по величине, то для ее отыскания нужно разделить путь на время. Получим 2πОN/60 = πON/30, т. е. немногим более, чем 0,1 ON (π/30=3,14/30=0,105).

Теперь, когда мы знаем обе составляющие скорости в точке N: одну по направлению ОN, равную υ (см/с), и другую, к ней перпендикулярную, равную πON/30 (см/с), остается сложить их по правилу параллелограмма. Диагональ представит скорость составного движения и вместе с тем определит направление касательной NТ к спирали в данной точке [20].

Наша следующая кривая — равноугольная, или логарифмическая, спираль — устроена хитроумнее, чем спираль Архимеда. Изучать ее первым начал Декарт (1638 г.), независимо от него с ней работал Торричелли, а в конце XVII века многие замечательные свойства логарифмической кривой, о которых сейчас пойдет речь, установил Якоб Бернулли. Эти почти мистические свойства произвели на ученого столь сильное впечатление, что он завещал высечь на своем надгробии слова: «Еаdemmutateresurgo» (измененная, я воскресаю той же).

Равноугольную спираль (рис.7) можно, определить как геометрическое место точек Р, движущихся и плоскости так, что касательная в точке Р образует постоянный угол а с радиус-вектором ОР, проведенным в точку Р из неподвижного полюса О. Дифференциальное исчисление позволяет легко и просто вывести уравнение логарифмической спирали. Наиболее естественно записывать его в полярных координатах (r, θ), в которых оно принимает изящный вид:

г = аеθ ctga,

где е—фундаментальная постоянная, используемая как основание натуральных логарифмов, а а—значение г при θ == 0.

Одно из основных свойств равноугольной спирали мы получим, если обратимся к наиболее характерному свойству показательной функции eх — соотношению ep+q == ереq.

Предположим, что точки Р, Q, R ... размещены на спирали через равные угловые промежутки (все углы QОР, RОQ, ... равны одной и той же величине β). Тогда OQ/ ОР == еβ ctga == OR/OQ = ..., поэтому в треугольниках ОРQ, OQR, ... углы при вершине О равны и отношение сходственных сторон остается неизменно. По теореме из «Начал» Евклида все эти треугольники подобны. Следовательно, углы ОQР, ОRQ, ... равны. Пользуясь одним лишь этим свойством, можно доказать, что касательная в любой точке Р логарифмической спирали образует постоянный угол с радиус-вектором ОР.

Пусть Р и Q — любые две точки логарифмической спирали, причем ОР>OQ. Предположим, что в полюс О мы воткнули булавку и всю спираль можно поворачивать вокруг точки О. Если повернуть спираль так, чтобы прямая OQ совпала с прямой ОР, то растяжение спирали (полюс О остается неподвижным), переводящее точку Q в точку Р, отобразит каждую точку повернутой спирали на соответствующую точку исходной спирали.

А теперь перечислим некоторые свойства равноугольной спирали, столь глубоко поразивших Якоба Бернулли.

Если луч света, испущенный источником в точкеО, отражается от равноугольной спирали в точке Р, то огибающей отраженных лучей, когда точка Р опишет всю кривую, будет спираль, в точности повторяющая исходную. Это означает, что каустикой равноугольной спирали служит такая же равноугольная спираль. В каждой точке равноугольной спирали существует перпендикуляр к касательной, называемый, как и в случае других кривых, нормалью. Огибающей нормалей также служит равноугольная спираль, совпадающая по форме с исходной спиралью. Подера равноугольной спирали относительно полюса 0 (то есть геометрическое место оснований перпендикуляров, опущенных из точки О на касательные к кривой) имеет форму исходной равноугольной спирали [20].

Существует вполне простой способ построения эволюты любой заданной кривой: нужно лишь туго навить на кривую нить, к концу которой прикреплен карандаш и, разматывая эту нить, следить за тем, чтобы она оставалась натянутой. Конец карандаша опишет эволюту. Эта кривая замечательна тем, что огибающая ее нормалей совпадает с исходной кривой!

Многие из описанных нами огибающих сравнительно недавно привлекли внимание художников. Произведения с их изображениями часто продают по весьма высоким ценам. Работа, выполненная цветными нитками на куске тонкого картона, позволяет зрителю погрузиться в глубины трансцендентных размышлений. Математическое вышивание было введено в женских школах примерно сто лет назад, и ныне его все шире ставят на коммерческую основу. Недавно появившийся прибор для вычерчивания эпициклов пользовался огромным успехом. Можно не сомневаться в том, что кривые навсегда останутся одним из наиболее интересных творений математики.