Смекни!
smekni.com

Математична обробка результатів вимірів (стр. 5 из 11)

де

, так як поява однієї із можливих подій є достовірна подія.

Якщо випадкова величина X має нескінченне число можливих значень, то

Математичним сподіванням випадкової величини X називається сума добутку всіх можливих значень випадкової величини на ймовірності цих значень.

Математичним сподіванням неперервної випадкової величини X, можливі значення якої належать відрізку [а, в], називають визначений інтеграл

а де

(х) - щільність імовірності розподілу випадкової величини.

Математичне сподівання має ту ж розмірність, що і випадкова величина, та має властивості:

1. Математичне сподівання постійної величини дорівнює величині постійної, тобто М(С) = С.

2. Постійний множник можна виносити за знак математичного сподівання М(СХ) = СМХ.

3. Математичне сподівання суми декількох випадкових величин дорівнює сумі їх математичних сподівань M (x+y+…+k) = Mx + My + … + Mk

4. Математичне сподівання добутку декількох взаємно незалежних випадкових величин дорівнює добутку їх математичних сподівань

Математичне сподівання може бути як додатнім, так і від'ємним.

Відомо, що для повної групи подій

.

Таким чином, виявляється механічна інтерпретація математичного сподівання. Воно буде абсцисою центру тяжіння системи матеріальних точок.

Якщо ймовірності появи випадкових величин xі тобто

де X - середнє арифметичне значення випадкової величини.

Це означає, що математичне сподівання приблизно дорівнює середньому арифметичному значенню випадкової величини. Воно буде тим точніше, чим більше буде проведено дослідів.

2) Мода і медіана випадкової величини

Модою Мо дискретної випадкової величини називають таке її значення, що має найбільшу ймовірність.

Практично, якщо маємо дискретний ряд розподілу, то знаходимо таке k-е значення випадкової величини х, що має найбільшу величину ймовірності Pn(k).

Для неперервної випадкової величини модою буде таке її значення, що має максимум щільності розподілу, тобто

(Мо) = mах.

Якщо многокутник розподілу або крива розподілу має два або більше максимумів, то такий розподіл називають двохмодальним чи багатомодальним.

Медіаною Ме випадкової величини X називають таке її значення, відносно якого ймовірність появи як більшого, так і меншого значення випадкової величини X має приблизно однакову ймовірність, тобто

Геометрична медіана - це абсциса точки, де площа кривої розподілу розділяється наполовину. Тоді функція розподілу в точці Ме дорівнює математичне сподівання, мода і медіана збігаються, тобто

3) Дисперсія і середнє квадратичне відхилення

Очевидно, що величину розсіювання для кожної випадкової величини від математичного сподівання можна обчислити, тобто

Величину

називають центрованою випадковою величиною. Так як імовірність появи центрованих випадкових величин X справа і зліва від Мх однакова, то її математичне сподівання дорівнює нулю і не може характеризувати розсіювання її значень. Тому якістю міри розсіювання X беруть математичне сподівання від квадрата відхилення випадкової величини від її математичного сподівання і називають його дисперсією.

Дисперсією випадкової величини є математичне сподівання квадрата відхилення випадкової величини від її математичного сподівання, тобто

Для дискретної випадкової величини дисперсія матиме вигляд суми

для неперервної це буде інтеграл

Дисперсія має розмірність квадрата розмірності випадкової величини, що не зовсім зручно. Тому для характеристики міри розсіювання випадкової величини приймають додатковий квадратичний корінь із дисперсії. Цю характеристику називають середнім квадратичним відхиленням або стандартам і позначають символом

Стандарт має таку саму розмірність, як і випадкова величина X. Дисперсія має такі властивості:

1. Дисперсія постійної величини дорівнює нулю D (C) = 0.

2. Дисперсія добутку постійної величини на випадкову величину дорівнює добутку квадрата постійної величини на дисперсію випадкової величини D(CX) = C2Dx

Якщо маємо декілька таких добутків, то

3. Дисперсія випадкової величини дорівнює математичному сподіванню її квадрата мінус квадрат її математичного сподівання

4). Моменти випадкової величини

Узагальненням основних числових характеристик випадкових величин є моменти випадкової величини. Визначають початкові та центральні моменти.

Початковим моментом k-го порядку випадкової величини Xk називають математичне сподівання від величини X , тобто

Для дискретної випадкової величини початковий момент буде

для неперервної

При порівняні формул видно, що початковий момент першого порядку є математичне сподівання випадкової величини, тобто

= Мх.

Центральним моментом k-го порядку випадкової величини X називають математичне сподівання від величини (X-Mx)k

Очевидно, що центральний момент першого порядку завжди буде дорівнювати нулю.

5) Асиметрія та ексцес.

Третій центральний момент

служить характеристикою асиметрії (скошеність) розподілу. Якщо
= 0, то ми маємо симетричний розподіл випадкової величини відносно математичного сподівання.

Асиметрія — це відношення третього центрального моменту до середнього квадратичного відхилення в третьому степені

Математичне сподівання, мода, медіана, дисперсія, середнє квадратичне відхилення, моменти, асиметрія і ексцес використовують для характеристики випадкових величин при вирішенні великої кількості практичних задач, коли закон розподілу або не потрібний, або його не можна визначити. Треба пам'ятати, що кожна із числових характеристик відображає ту чи іншу властивість закону розподілу.

Центральні моменти можна виразити через початкові моменти

4. Нормальний закон розподілу випадкових величин

Нормальний закон розподілу випадкових величин має важливе значення в теорії ймовірностей і найчастіше зустрічається на практиці. Головна його властивість полягає в тому, що серед інших законів він є граничним законом, до якого наближуються інші закони розподілу в досить частих подібних типових умовах. Доведено, що більшість випадкових величин, якому б закону розподілу не підкорялися, в сумі великого числа додатних нівелюються, а сума їх підкоряється закону досить близькому до нормального закону. Це твердження відноситься і до результатів геодезичних вимірів.

Неперервна випадкова величина має нормальний розподіл,якщо щільність імовірності має рівняння

де е = 2,718...,

= 3,141..., Мх - математичне сподівання,
— середнє квадратичне відхилення (стандарт). Мх та
називають параметрами нормального закону розподілу. Якщо відомі значення Мх і
, то щільність імовірності повністю визначена.

Відмітимо деякі властивості кривої нормального розподілу:

1. Крива розподілу симетрична відносно ординати, яка проходить черезточку Мх.

2. Крива має один максимум при х = Мх і дорівнює