Смекни!
smekni.com

Матричные антагонистические игры с нулевой суммой в чистых стратегиях (стр. 10 из 16)

Цена реализации 1 ед. продукции, д.е. Доля продукции предприятия 1, купленной населением
Предприятие 1 Предприятие 2
10 10 0,31
10 6 0,33
10 2 0,18
6 10 0,7
6 6 0,3
6 2 0,2
2 10 0,92
2 6 0,85
2 2 0,72

По условию задачи на рынке региона действует только 2 предприятия. Поэтому долю продукции второго предприятия, приобретённой населением, в зависимости от соотношения цен на продукцию можно определить как единица минус доля первого предприятия.

Стратегиями предприятий в данной задаче являются их решения относительно технологий производства продукции. Эти решения определяют себестоимость и цену реализации единицы продукции. В задаче необходимо определить:

1. Существует ли в данной задаче ситуация равновесия при выборе технологий производства продукции обоими предприятиями?

2. Существуют ли технологии, которые предприятия заведомо не будут выбирать вследствие невыгодности?

3. Сколько продукции будет реализовано в ситуации равновесия? Какое предприятие окажется в выигрышном положении?

Решение задачи

1. Определим экономический смысл коэффициентов выигрышей в платёжной матрице задачи. Каждое предприятие стремится к максимизации прибыли от производства продукции. Но кроме того, в данном случае предприятия ведут борьбу за рынок продукции в регионе. При этом выигрыш одного предприятия означает проигрыш другого. Такая задача может быть сведена к матричной игре с нулевой суммой. При этом коэффициентами выигрышей будут значения разницы прибыли предприятия 1 и предприятия 2 от производства продукции. В случае, если эта разница положительна, выигрывает предприятие 1, а в случае, если она отрицательна – предприятие2.

2. Рассчитаем коэффициенты выигрышей платёжной матрицы. Для этого необходимо определить значения прибыли предприятия 1 и предприятия 2 от производства продукции. Прибыль предприятия в данной задаче зависит:

- от цены и себестоимости продукции;

- от количества продукции, приобретаемой населением региона;

- от доли продукции, приобретённой населением у предприятия.

Таким образом, значения разницы прибыли предприятий, соответствующие коэффициентам платёжной матрицы, необходимо определить по формуле (1):

D = p×(S×R1-S×C1) – (1-p) ×(S×R2-S×C2) (1),

где D– значение разницы прибыли от производства продукции предприятия 1 и предприятия 2;

p- доля продукции предприятия 1, приобретаемой населением региона;

S– количество продукции, приобретаемой населением региона;

R1 и R2 - цены реализации единицы продукции предприятиями 1 и 2;

C1 и C2 – полная себестоимость единицы продукции, произведённой на предприятиях 1 и 2.

Вычислим один из коэффициентов платёжной матрицы.

Пусть, например, предприятие 1 принимает решение о производстве продукции в соответствии с технологией III, а предприятие 2 – в соответствии с технологией II. Тогда цена реализации единицы. продукции для предприятия 1 составит 2 д.е. при себестоимости единицы. продукции 1,5 д.е. Для предприятия 2 цена реализации единицы. продукции составит 6 д.е. при себестоимости 4 д.е. (табл. 1.1).

Количество продукции, которое население региона приобретёт при средней цене 4 д.е., равно 4 тыс. ед. (таблица 1.2). Доля продукции, которую население приобретёт у предприятия 1, составит 0,85, а у предприятия 2 – 0,15 (табл. 1.3). Вычислим коэффициент платёжной матрицы a32 по формуле (1): a32 = 0,85×(4×2-4×1,5) – 0,15×(4×6-4×4) = 0,5 тыс. ед.

где i=3 – номер технологии первого предприятия, а j=2 – номер технологии второго предприятия.

Аналогично вычислим все коэффициенты платёжной матрицы. В платёжной матрице стратегии A1 – A3 – представляют собой решения о технологиях производства продукции предприятием 1, стратегии B1 – B3 – решения о технологиях производства продукции предприятием 2, коэффициенты выигрышей – разницу прибыли предприятия 1 и предприятия 2. Платёжная матрица в игре «Борьба двух предприятий за рынок продукции региона».

B1 B2 B3 Minj
A1 0,17 0,62 0,24 0.17
A2 3 -1,5 -0,8 -1.5
A3 0,9 0,5 0,4 0.4
Maxi 3 0.62 0.4

В данной матрице нет ни доминируемых, ни дублирующих стратегий. Это значит, что для обоих предприятий нет заведомо невыгодных технологий производства продукции. Определим минимальные элементы строк матрицы. Для предприятия 1 каждый из этих элементов имеет значение минимально гарантированного выигрыша при выборе соответствующей стратегии. Минимальные элементы матрицы по строкам имеют значения: 0,17, -1,5, 0,4.

Определим максимальные элементы столбцов матрицы. Для предприятия 2 каждый из этих элементов также имеет значение минимально гарантированного выигрыша при выборе соответствующей стратегии. Максимальные элементы матрицы по столбцам имеют значения: 3, 0,62, 0,4.

Нижняя цена игры в матрице равна 0,4. Верхняя цена игры также равна 0,4. Таким образом, нижняя и верхняя цена игры в матрице совпадают. Это значит, что имеется технология производства продукции, которая является оптимальной для обоих предприятий в условиях данной задачи. Эта технология III, которая соответствует стратегиям A3 предприятия 1 и B3 предприятия 2. Стратегии A3 и B3 – чистые оптимальные стратегии в данной задаче.

Значение разницы прибыли предприятия 1 и предприятия 2 при выборе чистой оптимальной стратегии положительно. Это означает, что предприятие 1 выиграет в данной игре. Выигрыш предприятия 1 составит 0,4 тыс. д.е. При этом на рынке будет реализовано 5 тыс. ед. продукции (реализация равна спросу на продукцию, таблица 1.2).. Оба предприятия установят цену за единицу продукции в 2 д.е. При этом для первого предприятия полная себестоимость единицы продукции составит 1,5 д.е., а для второго – 1 д.е (таблица 1.1). Предприятие 1 окажется в выигрыше лишь за счёт высокой доли продукции, которую приобретёт у него население.

Смешанные стратегии в матричных играх

Понятие о матричных играх со смешанным расширением

Исследование в матричных играх начинается с нахождения её чистой цены. Если матричная игра имеет решение в чистых стратегиях, то нахождением чистой цены заканчивается исследование игры. Если же в игре нет решения в чистых стратегиях, то можно найти нижнюю и верхнюю цены этой игры, которые указывают, что игрок 1 не должен надеяться на выигрыш больший, чем верхняя цена игры, и может быть уверен в получении выигрыша не меньше нижней цены игры. Улучшение решений матричных игр следует искать в использовании секретности применения чистых стратегий и возможности многократного повторения игр в виде партии. Этот результат достигается путём применения чистых стратегий случайно, с определённой вероятностью.

Определение. Смешанной стратегией игрока называется полный набор чистых стратегий, применённых в соответствии с установленным распределением вероятностей. Матричная игра, решаемая с использованием смешанных стратегий, называется игрой со смешанным расширением.

Стратегии, применённые с вероятностью, отличной от нуля, называются активными стратегиями.

Доказано, что для всех игр со смешанным расширением существует оптимальная смешанная стратегия, значение выигрыша при выборе которой находится в интервале между нижней и верхней ценой игры:

Vн £ V £ Vв.

При этом условии величина V называется ценой игры.

Кроме того, доказано, что, если один из игроков придерживается своей оптимальной смешанной стратегии, то выигрыш остаётся неизменным и равным цене игры V, независимо от того, каких стратегий придерживается другой игрок, если только он не выходит за пределы своих активных стратегий. Поэтому, для достижения наибольшего гарантированного выигрыша второму игроку также необходимо придерживаться своей оптимальной смешанной стратегии.

Решение матричных игр со смешанным расширением методами линейного программирования

Решение матричной игры со смешанным расширением – это определение оптимальных смешанных стратегий, то есть нахождение таких значений вероятностей выбора чистых стратегий для обоих игроков, при которых они достигают наибольшего выигрыша.

Для матричной игры, платёжная матрица которой показана на рис. 1.1, Vн¹Vв, определим такие значения вероятностей выбора стратегий для игрока 1 (p1, p2,…, pm) и для игрока 2 (q1, q2,…, qn), при которых игроки достигали бы своего максимально гарантированного выигрыша.

Если один из игроков придерживается своей оптимальной стратегии, то, по условию задачи, его выигрыш не может быть меньше цены игры V. Поэтому данная задача может быть представлена для игроков в виде следующих систем линейных неравенств:

Для первого игрока:


Для второго игрока:

Чтобы определить значение V, разделим обе части каждого из уравнений на V. Величину pi/Vобозначим через xi, а qj/V– через yj.

Для игрока 1 получим следующую систему неравенств, из которой найдём значение 1/v:

Для игрока 1 необходимо найти максимальную цену игры (V). Следовательно, значение 1/Vдолжно стремиться к минимуму.

Целевая функция задачи будет иметь следующий вид:

min Z = min 1/V = min (x1 + x2 + … + xm)


Для игрока 2 получим следующую систему неравенств, из которой найдём значение 1/v: