Смекни!
smekni.com

Методы решения краевых задач, в том числе "жестких" краевых задач (стр. 7 из 9)

8 Второй алгоритм для начала счета методом прогонки С.К.Годунова

Этот алгоритм обсчитан на компьютерах в кандидатской диссертации.

Этот алгоритм требует дополнения матрицы краевых условий Uдо квадратной невырожденной:

Начальные значения Y

(0), Y
(0), Y
(0), Y
(0), Y*(0) находятся из решения следующих систем линейных алгебраических уравнений:

∙ Y*(0) =
,

∙ Y
(0) =
, где i =
,
,
,
,

где 0 – вектор из нулей размерности 4х1.

9 Замена метода численного интегрирования Рунге-Кутта в методе прогонки С.К.Годунова

Эта замена формул Рунге-Кутта на формулу теории матриц обсчитана на компьютерах в кандидатской диссертации.

В методе С.К.Годунова как показано выше решение ищется в виде:

Y(x) = Y

(x) ∙ c + Y*(x).

На каждом конкретном участке метода прогонки С.К.Годунова между точками ортогонализации можно вместо метода Рунге-Кутта пользоваться теорией матриц и выполнять расчет через матрицу Коши:

Y

(x
) = K(x
- x
) ∙Y
(x
).

Так выполнять вычисления быстрее, особенно для дифференциальных уравнений с постоянными коэффициентами.

И аналогично через теорию матриц можно вычислять и вектор Y*(x) частного решения неоднородной системы дифференциальных уравнений. Или для этого вектора отдельно можно использовать метод Рунге-Кутта, то есть можно комбинировать теорию матриц и метод Рунге-Кутта.

10 Метод половины констант

Этот метод пока не обсчитан на компьютерах.

Выше было показано, что решение системы линейных обыкновенных дифференциальных уравнений можно искать в виде только с половиной возможных векторов и констант. Была приведена формула для начала вычислений:


Y(0) = М

∙с +
.

Из теории матриц известно, что если матрица ортонормирована, то её обратная матрица есть её транспонированная матрица. Тогда последняя формула приобретает вид:

Y(0) = М

∙с + U
∙u

или

Y(0) = U

∙u
+ М
∙с

или

Y(0) =

,

Таким образом записана в матричном виде формула для начала счета с левого края, когда на левом крае удовлетворены краевые условия.

Далее запишем V∙Y(1) = v и Y(1) = K(1←0) ∙Y(0) + Y*(1←0) совместно:

V∙ [ K(1←0) ∙Y(0) + Y*(1←0) ] = v

V∙ K(1←0) ∙Y(0) = v - V∙Y*(1←0)

и подставим в эту формулу выражение для Y(0):

V∙ K(1←0) ∙

= v - V∙Y*(1←0).

V∙ K(1←0) ∙

= p.

Таким образом мы получили выражение вида:

D∙

= p,

где матрица D имеет размерность 4х8 и может быть естественно представлена в виде двух квадратных блоков размерности 4х4:

= p.

Тогда можем записать:

D1∙ u

+ D2 ∙ c = p.

Отсюда получаем, что:

c = D2

∙ ( p - D1∙ u
)

Таким образом, искомые константы найдены.

Далее показано как применять этот метод для решения «жестких» краевых задач.

Запишем

V∙ K(1←0) ∙

= p.

совместно с K(1←0) = K(1←x2) ∙ K(x2←x1) ∙ K(x1←0) и получим:


V∙ K(1←x2) ∙ K(x2←x1) ∙ K(x1←0) ∙

= p.

Эту систему линейных алгебраических уравнений можно представить в виде:

[ V∙ K(1←x2) ] ∙ { K(x2←x1) ∙ K(x1←0) ∙

} = p.

[ матрица ] ∙ { вектор } = вектор

Эту группу линейных алгебраических уравнений можно подвергнуть построчному ортонормированию, которое сделает строчки [матрицы] ортонормированными, {вектор} затронут не будет, а вектор получит преобразование. То есть получим:

[ V∙ K(1←x2) ]

{K(x2←x1) ∙ K(x1←0) ∙
} =p
.

И так далее.

В итоге поочередного вычленений матриц слева из вектора и ортонормирования получим систему:

D

= p
,

Отсюда получаем, что:

c = D2

∙ (p
- D1
∙ u
)

Таким образом, искомые константы найдены.

11 Применяемые формулы ортонормирования

Эти формулы обсчитаны в кандидатской диссертации.

Взято из: Березин И.С., Жидков Н.П. Методы вычислений, том II, Государственное издательство физико-математической литературы, Москва, 1962 г. 635 стр.

Пусть дана система линейных алгебраических уравнений порядка n:

А

=
.

Здесь над векторами поставим черточки вместо их обозначения жирным шрифтом.

Будем рассматривать строки матрицы А системы как векторы:

=(
,
,…,
).

Ортонормируем эту систему векторов.

Первое уравнение системы А

=
делим на
.

При этом получим:

+
+…+
=
,
=(
,
,…,
),