Смекни!
smekni.com

Формування математичних понять в процесі викладання математики в основній школі (стр. 10 из 11)

Для приналежності конкретного об'єкту до класу, заданого у визначенні, коли видові відмінності сполучені диз'юнктивний, необхідне дотримання (наявність) родової властивості і хоча б однієї з видових відмінностей.

2.2. Виконання дії підведення під поняття.

Умін­ня застосовувати поняття є показником його засвоєння. На думку Н.О.Менчинської, якщо учень справді засвоїв поняття, то він уміє його і застосовувати.

Одним із провідних принципів педагогічної психології є принцип єдності знань і дій. Проте існують два роди знань: знання про пред­мети і явища навколишнього світу (а отже, і про поняття) і знання про дії, які з ними потрібно виконувати. Недоліком традиційного ісучасного навчання математики є недостатня увага до знань другого роду.

Часто учні, які добре знають означення математичних понять, не вміють застосовувати їх до доведення теорем і розв'язування за­дач, зокрема прикладних. Тому дії, адекватні знанням, зокрема по­няттям, мають стати не тільки засобом, а й предметом засвоєння.

З погляду застосування понять важливу роль відіграють такі розумо­ві дії, як «підведення до поняття» («дія розпізнавання») та обернена їй дія — відшукання наслідків. Остання означає, що від факту належності об'єкта до поняття приходять до системи властивостей, які має цей об'єкт. Потрібна спеціальна система вправ на підведення об'єктів до по­няття. Для встановлення факту належності об'єкта до певного поняття потрібно перевірити наявність у об'єкта сукупності необхідних і достат­ніх властивостей. Якщо виявиться, що об'єкт не має хоча б однієї з іс­тотних властивостей, роблять висновок, що до даного поняття він не на­лежить. При цьому можна використовувати не тільки означення, а й теореми, що виражають властивості понять, які еквівалентні означенням у тому розумінні, що властивості понять, які стверджуються в них, мо­жуть бути покладені в основу означень.

Наприклад, для встановленні належності чотирикутника до паралелограмів можна скористатися озна­ченням паралелограма і теоремою про його ознаку. Разом вони є еквіва­лентними системами необхідних і достатніх властивостей.

Перелік операцій, що входять до складу дії підведення до поняття у випадку, коли істотні властивості пов'язані сполучником «і» чи сполучником «або», можна задати у вигляді такого навчального алго­ритму. Щоб визначити, чи належить х до поняття у,потрібно:

1) виокремити властивості у;

2) з'ясувати, якими сполучниками пов'язані ці властивості;

3) якщо: а) сполучником «і», то перевірити, чи має х всі властивості у. Якщо так, то х належить до поняття у; якщо ні, то х не належить до поняття у; б) сполучником «або», то перевірити, чи має х хоча б одну властивість у. Якщо так, то х належить до поняття у; якщо ні, то х не належить до поняття у.

Якщо означення поняття має змішану структуру, тобто містить сполуч­ник «і» та сполучник «або», то в алгоритмі потрібні додаткові вказівки.

Наведемо приклад. У курсі геометрії 7 класу учні ознайомлюються з означенням медіани трикутника. Доцільно ще на етапі введення озна­чення чітко виділити дві істотні властивості, які воно містить і які лише разом утворююгь необхідну і достатню властивість належності об'єкта допоняття «медіана»: 1) медіана — це відрізок; 2) цей відрізок з'єднує вершину трикутника із серединою протилежної сторони.

Щоб встановити, чи є АВмедіаною трикутника АВС,потрібно: 1) пригадати означення медіани; 2) переконатися, що істотні власти­вості в ньому пов'язані сполучником «і»; 3) перевірити, чи має АОобидві властивості медіани.

2.3. Виконання дії виведення наслідків

Перелік операцій, що є складовими дії «відшукання наслідків», можна задати у вигляді такого навчального алгоритму: 1) назвати всі істотні властивості, які входять в означення поняття; 2) назвати інші істотні властивості, які вивчалися.

Наприклад, результати відшукання наслідків з поняття «рівнобедрений трикутник» можна сформулювати так. Якщо трикутник рівнобедрений, то: 1) дві сторони його рівні; 2) кути при основі рівні; 3) бісектриса кута при вершині є медіаною, проведеною до основи; 4) бісектриса кута при вершині є висотою, проведеною до основи; 5) пряма, що містить згадану бісектрису кута при вершині, є віссю симетрії цього трикутника.

З метою забезпечення передумов для формування умінь застосовувати поняття та їхні властивості до розв'язування задач і доведення теорем, доцільно після вивчення кожного з основних понять і відношень звести разом їхні істотні властивості, що містяться в означеннях і теоремах.

До таких понять слід віднести насамперед основні геометричні фі­гури та їхні властивості, відношення рівності, паралельності, перпен­дикулярності, основні види рівнянь, нерівностей, функцій. У міру вивчення курсу виникають нові можливості щодо доведення відно­шень рівності, паралельності й перпендикулярності відрізків, подіб­ності фігур. Тому важливо сформулювати правила-орієнтири для до­ведення цих відношень.

Наприклад, щоб довести рівність двох відріз­ків, можна включити їх у трикутники і довести рівність цих трикут­ників або скористатися властивістю одного з рухів, або застосувати вектори, або довести, що ці відрізки є бічними сторонами рівнобедреного трикутника чи протилежними сторонами паралелограма (прямо­кутника, квадрата, ромба).

Основою застосування понять до розв'язування складніших задач і доведення теорем є прийом розумової діяльності, який дістав назву «ана­ліз через синтез», або переосмислення елементів задачі з погляду різних понять. У процесі застосування понять в учнів формується така важлива розу­мова дія, як конкретизація, оскільки використання знань у практичних ситуаціях пов'язане з переходом від абстрактного до конкретного. Дослі­дження педагогічної психології показують, що перехід від оперування абс­трактними поняттями до конкретної практичної ситуації досить складний для школярів.

З цього приводу Л. С. Виготський писав, що шлях від абс­трактного до конкретного виявляється тут не менш важким, ніж шлях сходження від конкретного до абстрактного. Багатьом учням складно одночасно виокремлювати абстрактні спів­відношення в конкретних даних і абстрагуватися від наочного сприй­мання об'єктів. Для запобігання таким труднощам потрібно викорис­товувати конкретні практичні ситуації ще в період формування абст­рактних понять — розв'язувати задачі практичного змісту. Особливо корисними є практичні роботи на місцевості, екскурсії на сільського­сподарські та промислові підприємства.

2.4. Абстрактно-дедуктивний та конкретно-індуктивний методи навчання

Відомі конкретно-індуктивний і абстрактно-дедуктив­ний підходи до формування понять та їх означень. При першому з них учні спочатку спостерігають і аналізують кон­кретні об'єкти (числа, фігури, задачі та ін.), потім відокрем­люють і перераховують їх істотні ознаки і, нарешті, синтезують поняття та формулюють його означення. Так, при формуванні понять «прості» і «складені» числа можна запро­понувати учням розглянути такі множини чисел:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, ... 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24,

Учні визначають дільники чисел спочатку в першій мно­жині, а потім у другій; виявляють спільні і відмінні влас­тивості чисел обох рядів і означають поняття «просте число» і «складене число». При цьому слід звернути увагу на ті істотні ознаки, які узагальнюються і синтезуються в по­нятті.

Ці методи набули неабиякого поширення у навчанні математики. Вперше їх докладно проаналізував К.Ф.Лебединцев.

Суть абстрактно-дедуктивного методу навчання полягає в тому, що під час вивчення нового матеріалу вчитель відразу сам наводить означення понять, що вводяться, а потім наводить конкретні приклади об’єктів, що належать до цих понять. Формулюється й доводиться теорема, і лише після цього розглядаються конкретні приклади застосування нового теоретичного матеріалу.

Конкретно-індуктивний метод навчання протилежний абстрактно-дедуктивному. За цього методу пояснення нового матеріалу починається з розгляду прикладів. Використовуючи приклади, учні мають можливість виявити істотні властивості поняття, що вводиться. Це допомагає самостійно чи за допомогою вчителя сформулювати означення поняття. Рисунок до теореми дає змогу учням виявити властивості зображеної фігури і самостійно чи за допомогою вчителя сформулювати теорему.

Наприклад, у 9 класі запроваджується поняття кута, вписаного в коло. За абстрактно-дедуктивного методу навчання вчитель відразу розпочинає з формулювання означення вписаного в коло кута й ілюструє його конкретними прикладами.

Означення. Кут, вершина якого лежить на колі, а сторони перетинають це коло, називається вписаним у коло (мал.1). Кут ВАС на малюнку вписано в коло. Його вершина А лежить на колі, а сторони перетинають коло в точках В і С.

За конкретно-індуктивного методу навчання вчитель пропонує учням рисунок на дошці(Мал.2), на якому зображено кілька різних кутів, пов’язаних з колом. Вписані кути на малюнку зображено одним кольором (тут – потовщеними лініями). Учням пропонується порівняти кути, виділені кольором, і назвати їхні істотні спільні властивості. Учні помічають, що вершини кутів лежать на колі, а сторони перетинають це коло. Вчитель пропонує учням сформулювати означення; звертає увагу на неістотні властивості вписаних кутів (величина, розміщення центра кола відносно сторін).


ВИСНОВКИ

Під час написання дипломної роботи було реалізовано та повністю виконано мету та завдання поставлені на початку дослідження даної проблеми.