Смекни!
smekni.com

Евклідова і неевклідова геометрії (стр. 14 из 14)

Розгортаючи більш докладно ліву частину (4.3), будемо мати

.

Тому що крапка А i) не належить абсолюту, тобто

, те вирішуючи квадратне рівняння

знайдемо наступних значень відносини

, для шуканих крапок:

З іншого боку, як відомо, подвійне відношення чотирьох крапок А, B, М, N дорівнює подвійному відношенню, складеному з відповідних значень параметра

, тому

Але ця рівність можна переписати у вигляді

(4.4)

Вставляючи в праву частину (4.4) знайдені вираження

,
і з огляду на (3.21), одержимо

Тому що по визначенню

те попередня рівність можна переписати так:

Логарифмуючи цю рівність, маємо остаточно

(4.5)

Ця формула показує, що відстань між двома крапками А и В рівняється з точністю до множника подвійному відношенню даних крапок А, У и крапок М, N перетинання прямій АВ з абсолютом.

Кут

між двома променями а, b, що виходять із крапки З, також виражається через проективні поняття комплексної геометрії, Нехай т, n позначають дотичні до абсолюту, що проходять через крапку С. Помітимо, що прямі m, n необхідно комплексно сполучені. Аналогічно попередній формулі маємо

Модель Бельтрами-Клейна примітна тим, що прямі площини Лобачевского в ній зображуються у вигляді відкритих відрізків прямих евклідової площини. Вона здійснює геодезичне відображення площини Лобачевского на внутрішність кола евклідової площини.

Перш ніж перейти до інших моделей площини Лобачевского потрібно зробити наступні два важливих зауваження. По-перше, до моделі Бельтрами-Клейна можна прийти на основі відображення площини Лобачевского на граничну поверхню, на якій здійснюється Евклідова геометрія. Тому аксіоми геометрії Лобачевского тут виконуються автоматично по відображенню. Але наведене тут опис по відображенню основних понять дозволяє у свою чергу прийти до цієї моделі самостійним образом, на основі доказу выполнимости послідовно кожної аксіоми I - IV, V.

По-друге, до цієї ж моделі Бельтрами-Клейна можна прийти, мабуть, проектуванням у просторі Минковского сфери чисто мнимого радіуса з її центра на дотичну до неї площина, наприклад, у північному полюсі.

Припустимо тепер, що абсолют із центром Про модель Бельтрами-Клейна є більшим колом сфери. Ортогональне проектування внутрішності абсолюту на одну з отриманих півсфер дозволяє одержати нову модель площини Лобачевского на півсфері. Потім стереографическое проектування цієї півсфери на вихідну площину з полюса S, розташованого в іншій півсфері, де відрізок OS перпендикулярний площини абсолюту, приводить до моделі Пуанкаре усередині кола. Отже, у колишньому абсолюті прямими тепер є дуги окружностей, що ортогональне перетинають абсолют і діаметри абсолюту. Відносини інцидентності, лежати між і конгруентності кутів мають звичайний сенс. Поняття конгруентності відрізків також відповідним чином переноситься з моделі Бельтрами-Клейна.

Застосовуючи потім дрібно-лінійне відображення комплексного змінного до внутрішньої області абсолюту, одержимо відому модель Пуанкаре на напівплощині. У цій моделі «крапками» є крапки верхньої напівплощини, «прямими» - півкола із центром на граничній прямій - абсолюті. До «прямих» зараховуються також, напівпрямі верхньої напівплощини, перпендикулярні до абсолютної прямої. Відносини інцідентності й лежати між розуміємо у звичайному змісті. Конгруентність кутів у цій моделі збігається з евклідової конгруентностью. Модель Пуанкаре представляє собою конформне відображення площини Лобачевского на Евклідову напівплощина.

Що стосується поняття конгруентності відрізків, то воно визначається через рухи або відстань між двома крапками А и В, причому поняття відстані між крапками в останньому випадку не припускає виміру відрізків. По визначенню воно означає число.

(*)

якщо крапки A, У лежать на півкола або число

(**)

якщо крапки лежать на напівпрямій, перпендикулярній граничній прямій XX. У цих формулах кути

,
і ординати в1 , в2 мають звичайний сенс, ясний з малюнка 29,буд.

Очевидно, завжди можемо припускати, що позначення кутів символами

,
і ординат в1, в2для даних крапок A, У здійснено так, що праві частини в (*), (**) позитивні. Тепер неважко визначається конгруентність відрізків. Відрізки АВ і СD конгруентні, якщо відстань між кінцями A, В одного відрізка дорівнює відстані між кінцями З, D іншого відрізка.

Підкреслимо ще раз, що до моделі Пуанкаре на напівплощині ми прийшли в результаті відображення першої моделі Пуанкаре у внутрішності кола. Тому аксіоми Гильберта геометрії Лобачевского виконуються автоматично по відображенню.

Опису основних образів, що приводяться тут, і відносин інцидентності, лежати між, конгруентності відрізків і кутів дозволяють прийти до цієї моделі Пуанкаре на напівплощині самостійним образом, шляхом доказу кожної аксіоми гильбертовської аксіоматики.

На закінчення зупинимося на питанні незалежності 5-го постулату Евкліда від інших аксіом Гильберта. Відповідно до загальної установки, викладеної в главі 1, досить побудувати яку-небудь модель, на якій би виконувалися всі аксіоми Гильберта I - V за винятком аксіоми паралельності V. Аксіома ця, еквівалентна щодо аксіом I - IV твердженню 5-го постулату, полягає в наступному. Через крапку А, не приналежній прямій а, можна провести в площині, обумовленою цією крапкою А и прямій а, не більше одній прямій, що не перетинається з даній прямій a.

Очевидно, будь-яка модель геометрії Лобачевского, наприклад, Бельтрами-Клейна дозволяє довести незалежність аксіоми паралельності від попередніх аксіом I - IV. Дійсно, на цій моделі виконуються всі 19 аксіом I - IV, а аксіома V не виконується. Звідси містимо, що за допомогою аксіом I - IV, Гильберта неможливо довести аксіому паралельності V. Інакше кажучи, 5-й постулат Евкліда не можна вивести як теорему з попередніх аксіом I - IV.


Висновок

Відкриття неевклідової геометрії, Начало якому поклав Лобачевский, не тільки зіграло величезну роль у розвитку нових ідей і методів у математиці природознавства, але має й філософське значення. Панування до Лобачевского думки про непорушність геометрії Евкліда значною мірою ґрунтувалося на навчанні відомого німецького філософа І. Канта (1724-1804), родоначальника німецького класичного ідеалізму. Кант затверджував, що людина впорядковує явища реального миру відповідно до апріорних уявлень, а геометричні подання й ідеї нібито апріорні (латинське слово aprior означає - споконвічно, заздалегідь), тобто, не відбивають явищ дійсного миру, не залежать від практики, від досвіду, а є вродженими людському миру, раз і назавжди зафіксованому, властивими людському розуму, його духу. Тому, Кант уважав, що Евклідова геометрія непохитна, незмінна, і є вічною істиною. Ще до Канта геометрія Евкліда вважалася непорушної, як єдино можливе вчення про реальний простір.

Відкриття неевклідової геометрії довело, що не можна абсолютувати уявлення про простір, що «уживана» (як назвав Лобачевский геометрію Евкліда) геометрія не є єдино можливою, однак це не підірвало непорушність геометрії Евкліда. Отже, в основі геометрії Евкліда лежать не апріорному, уроджені розуму поняття й аксіоми, а такі поняття, які пов'язані з діяльністю людини, з людською практикою. Тільки практика може вирішити питання про те, яка геометрія вірніше викладає властивості фізичного простору. Відкриття неевклідової геометрії дало вирішальний поштовх грандіозному розвитку науки, сприяло й понині сприяє більше глибокому розумінню матеріального світу.


Список літератури

1. Глейзер Г.І. Історія математики в школі IX - X класи. – К., 2004

2. Даан Дальмедино А., Пейффер І. Шляхи й лабіринти. Нариси по історії математики. – К., 2003

3. Егоров І.П. Лекції по аксіоматиці Вейля й неевклідовим геометріям. – К., 2003

4. Егоров І. П. Основи геометрії. – К., 2003

5. Клайн М., Математика. Втрата визначеності. – К., 2004

6. Лаптєв Б.Л. М.І. Лобачевский і його геометрія. – К., 2006

7. Неевклідові простори й нові проблеми фізики. – К., 2003

8. Розенфельд Б.А. Неевклідові простори. – К., 2005

9. Широков П.А. Короткий нарис основ геометрії Лобачевского. – К., 1999.

10. Яглам І.М. Принцип відносності Галілея й неевклідова геометрія. – К., 2000

Евклідова і неевклідова геометрії