Смекни!
smekni.com

Евклідова і неевклідова геометрії (стр. 8 из 14)

Із другої теореми косинусів треба, що в сферичній геометрії не існує нерівних трикутників з відповідно рівними кутами. Інакше кажучи, якщо кути, одного сферичного трикутника дорівнюють відповідним кутам іншого сферичного трикутника, те такі трикутники рівні.

На закінчення встановимо лише збіг формул сферичної геометрії для фігур з малими лінійними розмірами з відповідними формулами евклідової геометрії.

Про сферичну геометрію в малому

Нехай лінійні розміри а, b, зі сферичного трикутника малі в порівнянні з радіусом сфери R. Очевидно, ці умови можна здійснити за рахунок малості зазначених лінійних розмірів або за рахунок вибору досить великого значення R. З формули, що виражає теорему косинусів, треба

З огляду на в цій рівності члени до другого порядку малості включно, одержимо теорему косинусів евклідової геометрії:


(1.14)

У випадку прямокутного сферичного трикутника з кутом маємо cos A=0 і формула (1.12) у межі приводить до співвідношення

,

тридцятимільйонну теорему Піфагора в геометрії Евкліда. Це рівність треба також з (1.14) при

.

Тому що при малих розмірах наведених сторін їхні синуси в першому наближенні пропорційні аргументам, то з (1.13) випливають два зв'язки

,

теорему синусів в евклідовій геометрії.

Отже, формули сферичної геометрії для фігур з малими лінійними розмірами в порівнянні з радіусом сфери збігаються з відповідними формулами евклідової геометрії. Аналогічний результат одержимо нижче при розгляді формул геометрії Лобачевского.

2.2 Еліптична геометрія на площині

Були показані найпростіші факти сферичної геометрії, у якій усякі дві прямі перетинаються у двох діаметрально протилежних крапках. Для того, щоб звільнитися від зазначеного недоліку й прийти до нової геометрії, у якій прямі мали б не більше однієї загальної крапки, умовимося вважати всяку пару діаметрально протилежних крапок сфери за одну крапку. Отриману нову поверхню після такого ототожнення пар крапок сфери будемо називати еліптичною площиною й позначати символом S2.

Ясно, що одержимо ту ж площину, якщо будемо будувати множини векторів Евклідова простору відношенню еквівалентності в якій

тоді й тільки тоді, коли вектори
й
непропорційні.

Прямі еліптичної площини виходять із більших кіл у результаті зазначеного ототожнення пара крапок і будуть як і раніше замкнутими лініями. Але побудована площина S2 стала принципово новим об'єктом математичного дослідження.

Залишаючись замкнутою поверхнею, вона втратила властивість двобічності. Еліптична площина є однобічною поверхнею, тобто, розфарбовуючи яку-небудь одну сторону цієї поверхні, розфарбуємо її по обидва боки. В еліптичній геометрії відсутнє поняття крапки, що лежить між двома іншими, якщо вони інцідентні прямій, тому що дві крапки на прямій визначають два взаємно додаткових відрізки. У цій геометрії можна встановити поняття поділу двох пар крапок А, У и М, N, інцідентних прямій. Пари A, B розділяє пари М, N, якщо крапки М, N лежать у різних відрізках, певних на даній прямій крапками А и В. Можна переконатися, що пари крапок A, У розділяє пари М, N тоді й тільки тоді, коли подвійне відношення

(АВМ) = АМ/ВМ:АN/ВN

чотирьох крапок А, В, М, N негативно.

Зрозуміло, еліптичну площину можна уявити собі також у вигляді півсфери, у якої діаметрально протилежні крапки екватора вважаються за одну крапку. Об'єкти нової моделі перебувають у певних зіставленнях з об'єктами відомої моделі на сфері. Завдяки цьому без звертання до аксіом виводимо, що ці дві моделі реалізують ту саму геометрію.

Проектування із центра о Евклідова простору на площину, дотичну до сфери в крапці З, де ОС

, переводить прямі еліптичної площини в прямі евклідової площини

. Якщо до крапок дотичної площини приєднати невласні крапки, то побудоване центральне проектування буде взаємно однозначним відображенням всіх крапок еліптичної площини на всі крапки розширеної евклідової (проективної) площини. Не будемо виписувати систему аксіом еліптичної геометрії й помітимо лише, що її можна одержати з аксіом проективної геометрії й аксіом конгруентності.

Всі поняття площини S2 переводяться по відображенню в деякі поняття двомірної проективної геометрії. Зіставлення відповідних геометричних образів отриманої проективної моделі характеризується наступною таблицею:

«крапка» крапка проективної площини
«пряма» пряма проективної площини
«рівність відрізків» рівність прообразів відрізків

Велике достоїнство проективної моделі полягає в тому, що крапки й прямі в ній зображуються звичними для нас образами. Однак, при вивченні властивостей конгруентних фігур сферична модель стає більше зручною.

Помітимо також, що прямі й площини зв'язування о Евклідова простору визначають нову модель площини S2, що відповідають геометричні образи якої представляються наступною таблицею:

S2 Зв'язування прямих і площин в Е3
«крапка» Площина зв'язування
«поділ двох пар крапок» Поділ двох пар прямих того самого пучка прямих
«відстань між двома крапками» Величина, пропорційна куту, між двома прямими зв'язування

Реалізація еліптичної площини у вигляді сфери, у якої діаметрально протилежні крапки ототожнені, дозволяє на цій площині ввести координати (х, в, z), зв'язані співвідношенням

x2+y2+z2=R2;


де R називається радіусом кривизни, а зворотна величина квадрата радіуса — кривизною. У цих координатах відстань а між двома крапками А (х1, в1, z1) і В(х2, в2, z2) визначається по формулі

. (2.1)

Відношення відстані між крапками до радіуса кривизни називається наведеною відстанню. Дві крапки площини S2 називаються полярними, якщо відповідним цим крапкам прямі тривимірного Евклідова простору ортогональні. Інакше кажучи, полярні крапки характеризуються тим, що наведена відстань між ними рівняється

. Відрізок прямій, обмежений полярно сполученими крапками, називається напівпрямій. Пряма складається із двох напівпрямих і має довжину, рівну
. Очевидно, геометричне місце крапок, полярних даній крапці А (х1, в1, z1), утворить пряму

(2.1')

Ця пряма називається полярою крапки A, а крапка А - полюсом прямій (2.1').

Прямі, перпендикулярні прямій, перетинаються в її полюсі. Обернено, усяка пряма, що проходить через полюс даної прямої, буде перпендикулярної до цієї прямої. Звідси треба, що через кожну крапку площини, відмінну від полюса даної прямої, можна провести єдиний перпендикуляр до цієї прямої. Ці властивості безпосередньо випливають із визначення полюсів і поляр.

У геометрії S2 можна побудувати взаємно однозначне відображення між крапками й прямими, при якому кожній крапці відповідає її полярна пряма, а кожній прямій - її полюс. Таке відображення називається полярним відображенням. В еліптичній площині одиничної кривизни полярне відображення переводить дві прямі а, b у такі крапки А, В, що відстань між цими крапками рівняється куту між даними прямими. Звідси випливає так званий принцип подвійності в еліптичній планіметрії: якщо в якій-небудь теоремі еліптичної геометрії замінити слова «крапка», «пряма», «відстань» і «кут» відповідно на слова «пряма», «крапка», «кут» і «відстань», те в результаті одержимо також справедливу пропозицію в цій геометрії. Прикладом двоїстих пропозицій, тобто пропозицій, що виходять одне з іншого, зазначеного правила є наступне: будь-які дві крапки визначають пряму, їм інцідентну; будь-які дві прямі визначають крапку, їм інцідентну.

Знайдемо тепер відстані між двома нескінченно близькими крапками М (х, в, z) і M’ (х + dх, в + dу, z + dz). З формули (2.1) треба, що

. (2.2)

Звідки з точністю до нескінченно малих другого порядку включно маємо

ds=-2(xdx+ydy+zdz).

З огляду на, що координати крапки (х + dх, в + dу, z + dz) задовольняють рівності