Смекни!
smekni.com

Распределение Пуассона Аксиомы простейшего потока событий (стр. 6 из 8)

Замечание 1.6.2

В силу неоднозначности выбора функции

и чисел
и
, можно заключить, что
-доверительный интервал неединственен.

1.7 Сравнение средних

Теперь рассмотрим случай, когда обе совокупности подчиняются нормальному распределению, но проверка гипотез о равенстве двух генеральных дисперсий закончилась отвержением гипотезы равенства. Такую задачу сравнения двух генеральных средних при неравных генеральных дисперсиях принято называть проблемой Беренса-Фишера (по имени учёного У. Беренса опубликовавшего первую работу на эту тему в 1929 г.). В этом случае вместо одной общей генеральной дисперсии мы имеем дело с двумя неравными генеральными дисперсиями: σ12 ≠ σ22. Соответственно имеем и две выборочные дисперсии s12 и s22. Тогда искомая t-статистика будет вычисляться по следующему выражению [1.7.1]:

(1.7.1)

Введём обозначения: θ= σ12 / σ22 , u = s12 / s22 и N= n1/ n2 . В этом случае выражение (1.7.1) можно переписать в следующем виде [(1.7.1)]:

(1.7.2).

Основная сложность этого случая заключается в том, что подкоренное выражение в знаменателе не имеет Хи-квадрат распределение, и потому статистика t не имеет распределения Стьюдента. В 40-60-е годы 20 века Бокс, Уэлч, Саттерзвайт, Кохрэн, Боно, Шеффе и многие другие статистики провели детальный анализ этой проблемы. Так в 1938 г. Уэлч исследовал приближённое распределение статистики (1.7.1) и показал, что при равных объёмах выборок n1 = n2 незнание величины θ= σ12 / σ22 не очень сильно влияет на итоговый результат. Однако для случая неравных объёмов выборок ошибки становятся весьма значительными. Другие подходы позволяли аппроксимировать статистику (1.7.2) распределение Стьюдента с дробными степенями свободы.

1.8 Метод минимума X2.

Метод минимума X2 применим лишь и случае группированного непрерывною рас­пределения или дискретного распределения. Оценки, получаемые этим методом, при больших п асимптотически эквивалентны оценкам, полу­ченным с помощью более простого видоизмененного метода миниму­ма X2, выражаемого уравнениями

(1.8.1)

или

(1.8.2)

в рассматриваемых случаях последний метод совладает с методом максимума правдоподобия.

Основная теорема о предельном распределении X2 для случая, когда некоторые параметры оцениваются по выборке что оценки находятся с помощью видоизмененного метода минимума X2. Однако там же было указано, что имеется целый класс методов нахождения оценок, приводящих к тому же самому пре­дельному распределению для X2. Теперь мы докажем это утверждение.

Асимптотические выражения для оценок, получаемых с помощью видоизмененного метода минимума X2 были приведены в явной форме

(1.8.3)

для общего случая у неизвестных параметров а1,...,аг. Предположим, что выполнены условия 1)—3) предыдущего параграфа или аналогичные условия для дискретного распределения. Тогда из предыдущего параграфа следует, что оценки (1.8.3)асимптотически нормальны (это уже было показано в параграфе 30.3) и асимптотически эффективны.

Во всех множествах асимптотически нормальных и асимптотически эффективных оценок для параметров имеются члены порядка n-1/2 та­кие же, как и в (1.8.3). Однако из вывода предельного распреде­ления для у2 следует, что это предельное распределение полностью определяется членами порядка n-1/2в (1.8.3). Действительно, по формулам

и

получаем

и показывает,что предельное распределение для .у = (
, ....
) определяется именно указанными членами.

Таким образом, теорема о предельном распреде­лении величины X2 справедлива для любого множества асимптоти­чески нормальных и асимптотически-эффективных оценок пара­метров.

1.9 Распределение Пуассона. Аксиомы простейшего потока событий

Говорят, что случайная величина Х имеет распределение Пуассона, если её возможные значения 0, 1, 2, ... , т, ... (бесконечное, но чёткое множество значений), а соответствующие вероятности выражаются формулой:


x 0 1 k
P e-l le-l

Числоl называется параметром распределения.

Простейший поток событий – такая последовательность событий, происходящих в случайный момент времени.

Поток событий называется пуассоновским, если он удовлетворяет аксиомам простейшего потока событий:

При таких допущениях с большой степенью точности выполняются следующие условия:

1. Отсутствие последействия: вероятность того, что на произвольном временном промежутке (с точки зрения длины и расположения на временной оси) не зависит от того, что происходило в момент времени, предшествующему этому моменту.

2. Однородность потока: Вероятность того, что на некотором временном промежутке произойдет 0,1,2,…,nсобытий зависит только от его длины и не зависит от положення этого отрезка на временной оси.

3. Пусть Dt - длина временного промежутка, тогда:

(Dt)=lDt+o(Dt), Dt®0.

4.

(Dt)=1-lDt+o(Dt), Dt®0.

Математическое ожидание распределения Пуассона равно:

M

=

2 ПРАКТИЧЕСКАЯ ЧАСТЬ

Вариант 23

Задача 1

На отрезок единичной длины

наугад ставится точка. Вычислить вероятность того, что расстояние от точки до концов отрезка превышает величину
.

Решить задачу при

,
.

Решение:

Пусть дан отрезок

длины
(Рис. 2.1). Расстояние от точки
до концов отрезка превышает величину
в том случае, если
, где
,
.

Рис. 2.1

Пусть А – событие, когда

. Тогда искомая вероятность
.

Для заданных значений

и
.

Задача 2

В круг радиуса R наудачу ставится точка. Найти вероятность того, что она попадет в одну из двух непересекающихся фигур, которые имеют площади

и
.

Решить задачу при

,
,
.

Решение:

Поскольку фигуры не пересекаются, то площадь, в которую должна попасть точка, равна

. Общая площадь, в которую может попасть точка, равна
. Таким образом искомая вероятность
. Для заданных значений
,
и
.