Смекни!
smekni.com

Случаен ли исход бросания монеты? (стр. 1 из 5)

Случаен ли исход бросания монеты?

Дж. Форд, Профессор физики Технологического института шт. Джорджия, редактор журнала Physica D: Nonlinear Phenomena

Исследование различий между упорядоченностью и хаотичностью в решениях задач нелинейной динамики приводит к таким новым понятиям, как сложность алгоритма, вычислимость числа и измеримость континуума.

Состояние Вселенной в данный момент надлежит рассматривать как следствие её предшествующего состояния и как причину будущего состояния.

Лаплас

Теория вероятностей — вот истинная логика этого мира.

Максвелл

Вероятностный подход к макроскопическим явлениям на протяжении веков сосуществовал с детерминистским подходом. Например, в период с 1650 по 1750 г. Ньютон построил детерминистское дифференциальное и интегральное исчисление, а представители семейства Бернулли разработали теорию вероятностей для случайных игр и различных других проблем многих тел. Оглядываясь назад, можно лишь удивляться тому, что столь явно противоположные взгляды на мир никогда не приводили к острым столкновениям. Столкновения, наверное, были бы неизбежны, если бы не Лаплас, необычайно успешно способствовавший возведению ньютоновского детерминизма в ранг догмата научной веры. После Лапласа вероятностное описание считалось не более чем полезным приёмом, к которому надлежало прибегать, когда по тем или иным причинам детерминистские уравнения движения трудно или даже невозможно решить точно. Более того, считалось, что вероятностное описание может быть выведено из детерминистских уравнений, хотя никто и никогда не указывал конкретно, как это можно было бы осуществить.

Несмотря на полную определённость ортодоксальной линии в классической физике, учёных не оставляло сильное беспокойство. Одновременное существование ярко выраженных случайных и не менее ярко выраженных детерминированных режимов вызывало у них двойственное чувство. Отзвук такой двойственности мы находим в весьма произвольном делении систем на преимущественно случайные и преимущественно детерминированные.

Так, рулетку, игру в кости и игру в орлянку идеальной монетой принято считать совершенно случайными процессами, несмотря на их явную детерминированность. В то же время погода, человеческое поведение и фондовая биржа — всё это считается строго детерминированным, несмотря на их непостоянство, переменчивость и непредсказуемость. Но вряд ли где-нибудь в науке больше путаницы и неразберихи со случайным и детерминированным, чем там, где речь идёт о системах с аналитическим гамильтонианом

H = H0(q, p) + λH1(q, p), (1)

первый член которого H0 есть гамильтониан системы с N степенями свободы, допускающей точное аналитическое решение, а второй — возмущение H1 с малым параметром λ, характеризующим интенсивность возмущения; через (q, p) обозначен полный аргумент (q1, ..., qN, p1, ..., pN). Существует физико-математический миф о том, что будто бы при малом числе степеней свободы N гамильтонианы такого вида аналитически разрешимы и детерминированны, а при больших N вступает в силу статистическая механика и закон больших чисел. Но такой миф сразу же вызывает сомнения, стоит лишь вспомнить о снискавшей печальную известность неразрешимости проблемы трёх тел или даже о тесно связанной с ней проблеме двух тел; о предостережении Пуанкаре, обнаружившего, что независимо от N гамильтоновы системы в подавляющем большинстве случаев не имеют других регулярных интегралов движения, кроме самого гамильтониана H; о том, что ни одна теорема о вероятностях никогда не выводилась из аналитического решения уравнения движения для игральной кости; и наконец, о существовании бесконечного класса аналитически разрешимых проблем многих тел при произвольно большом N, который без особого труда можно построить с помощью классической теории возмущений 1. Итак, неразбериха в вопросе о случайном и детерминированном вполне очевидна. Но гораздо хуже, что ещё большая неразбериха царит в вопросе о том, какого рода поведения следует ожидать от решений системы с любым конкретным гамильтонианом. Трудно поверить, хотя это действительно так, что на протяжении многих десятилетий в учебных аудиториях и учебниках преподаватели и учёные хранят весьма примечательное почти полное молчание 2 обо всём этом, как если бы гамильтониан (1) был болен неизлечимой болезнью, о которой не принято упоминать в хорошем обществе. Но примерно с начала 50-х годов XX века, через триста лет после рождения Ньютона, новая междисциплинарная область науки — так называемая нелинейная динамика — принялась средствами своих смежных дисциплин за решение некоторых проблем, возникающих в связи с такими гамильтонианами. Мы кратко изложим один новый результат, имеющий прямое отношение к затронутой нами теме. Более подробное изложение можно найти в обзорных статьях Дж. Лебовитца и О. Пенроуза [3], а также М. Берри [4].

СОВРЕМЕННЫЕ РЕЗУЛЬТАТЫ

О том, что упорядоченные траектории гамильтоновой системы переходят в хаотические при увеличении числа частиц, неопровержимо свидетельствуют, с одной стороны, успехи астрономической теории возмущений в построении механики Солнечной системы и решении других проблем не слишком большого числа тел, а с другой — не меньшие успехи статистической механики в решении проблем многих тел. Но признание этих успехов само по себе мало что даёт для понимания причин перехода и детальной структуры возникающих хаотических траекторий. Хотя у нелинейной динамики есть что сказать по этим вопросам (и немало [3, 4]), я здесь не стану распространяться и лишь постараюсь как можно более наглядно показать, что у детерминированной гамильтоновой системы могут существовать траектории, блуждающие в фазовом пространстве самым причудливым образом. При взгляде на подобные траектории на ум приходят такие слова, как «непредсказуемые», «хаотические» и даже «случайные». Нам необычайно подойдёт удивительно простой гамильтониан с двумя степенями свободы

H = ½(p12+ p22+ q12+ q22) + q12q2 – ⅓q23. (2)

При достаточно малой энергии E гамильтониан H в очень хорошем приближении описывает два несвязанных гармонических осциллятора. С возрастанием же энергии системы на поведении траекторий начинает всё сильнее сказываться нелинейная кубическая связь. Этот гамильтониан привлёк внимание многих после того, как был опубликован в неоднократно цитированной и ставшей классической работе М. Хенона и К. Хейлеса [5]. Читателю, которому приводимое ниже краткое резюме покажется недостаточно вразумительным, мы рекомендуем обратиться за объяснениями к статье [5].

Астрономы Хенон и Хейлес рассуждали так: если бы гамильтониан (2) был аналитически разрешим в том смысле, в каком разрешимы все задачи в учебниках классической механики повышенного типа, то данная система обладала бы двумя функционально независимыми регулярными интегралами движения. Следовательно, траектории системы должны были бы лежать на двумерных интегральных поверхностях в четырёхмерном фазовом пространстве системы. Если же гамильтониан (2) в каких-то условиях даёт статистические, или хаотические, траектории, то регулярным интегралом движения может быть только он сам, а траектории системы могут свободно блуждать по всей трёхмерной энергетической поверхности или по какой-нибудь её части. Итак, траектории гамильтониана считаются упорядоченными, если они лежат на двумерных поверхностях, и неупорядоченными, т.е. хаотическими, если они свободно блуждают по трёхмерной поверхности. Здесь у насторожившегося читателя, возможно, мелькнёт мысль, что противопоставление двумерных поверхностей трёхмерным есть нечто искусственное и не имеет прямого отношения к интересующему нас вопросу. Но, как мы сейчас покажем, тот, кто так думает, заблуждается.

Хенон и Хейлес интегрировали численно уравнения движения для своего гамильтониана, рассчитывая траектории при разных энергиях. Чтобы сразу было видно, по какой — двумерной или трёхмерной — поверхности в четырёхмерном фазовом пространстве проходит та или иная траектория, они выводили на дисплей координаты точек, в которых траектории пересекают плоскость (q2, p2), в виде графиков на плоскости (q2, p2). Если данная траектория лежит на двумерной поверхности, то точки её пересечения с плоскостью (q2, p2) лягут на некую кривую. Если же траектория свободно «плавает» по всей трёхмерной поверхности или по какой-то её части, то точки пересечения с плоскостью (q2, p2) заполнят некоторую часть плоскости. На рис. 1 показаны такие графики.

Рис. 1. Траектории, полученные путём численного интегрирования уравнений движения с нелинейным гамильтонианом (2). На графиках показаны пересечения траекторий с плоскостью (q2, p2). Слева энергия системы равна 1/12. Каждая кривая на графике состоит из точек пересечения одной траектории. Непрерывность и замкнутость кривых означает, что траектории лежат на двумерных поверхностях в четырёхмерном фазовом пространстве (q1, q2, p1, p2). График в центре построен при энергии системы, равной 1/8. Некоторые траектории по-прежнему лежат на двумерных поверхностях. Хаотическую же россыпь точек дала одна траектория, заполняющая некий трёхмерный объём; в этом случае энергия — единственный интеграл движения. На графике справа энергия равна 1/6. Все отдельные точки соответствуют одной траектории, которая свободно блуждает по некоторой части трёхмерной энергетической поверхности. При энергии, равной 1/6, почти все пары точек, находившихся первоначально достаточно близко друг от друга на плоскости (q2, p2) со временем экспоненциально расходятся.

При энергии E = 1/12 всякая траектория даёт некую кривую. Это означает, что при такой энергии движение полностью упорядочено и гамильтониан аналитически разрешим, т.е. интегрируем. Но при энергии E = 1/6 Хенон и Хейлес обнаружили нечто показавшееся тогда удивительным: даже простые системы могут вести себя как бы хаотически. Переход от порядка к хаосу происходит при энергии E = 1/8. В обоих случаях всю россыпь точек дала одна-единственная траектория. На мысль о хаосе и случайности наводит явная беспорядочность в распределении точек: если наблюдать на дисплее за появлением точек пересечения траектории с плоскостью (q2, p2) при E = 1/6, то обнаружить какую-нибудь пространственную или временную упорядоченность не представляется возможным. Итак, переход от траектории на двумерной поверхности к траектории на трёхмерной поверхности привносит в движение элемент хаоса. Быть может, нашей интуиции ближе другое представление: при E = 1/12 две соседние точки пересечения траектории с плоскостью (q2, p2) удаляются друг от друга линейно по времени, а при E = 1/6 — экспоненциально. Аналогичную ситуацию мы видим на рис. 2, где показан переход к турбулентности в струйке дыма от сигареты.