Смекни!
smekni.com

Механические свойства твердых тел в практике (стр. 7 из 8)

И все-таки с точки зрения современного строителя и арки и купола обладают существенными недостатками.

Главным из них является кривизна этих форм. Конечно, жителю первого этажа удобно будет иметь потолок в виде купола. Но удобно ли это будет для жителей второго этажа? Конечно, можно выровнять верхнюю сторону купола, постелив на него плоский пол.

Однако это приведет к затрате лишнего материала и сведет на нет все преимущества купола.

Другим существенным недостатком арок и куполов является их слабая сопротивляемость сосредоточенным на­грузкам. Рассмотрим работу арки по рисунку 28.

Слева изображена арка, на которую действует распределенная равномерно нагрузка. Вертикальная сила, действующая на верхнюю точку арки, стремится согнуть обе её половинки так, как показано пунктиром. Но другие силы, действующие на эти половинки, противодействуют такому изгибу, в результате чего материал арки работает только на сжатие.

Справа изображена арка, на которую действует только одна вертикальная сила, приложенная в верхней точке. Эта сила стремится изогнуть обе половины арки, но теперь противодействия изгибу нет, арка может разру­шиться. Сказанное выше характерно и для куполов.

Выход из этого положения напрашивается сам: надо выпрямить обе половинки арки (рис. 29, слева), тогда вертикальная сила будет сжимать укосины полученной фермы, не изгибая их. Такое изменение фермы не только упрочняет конструкцию, но и позволяет экономить материал (укосины короче дуг арки).

Нельзя ли еще сэкономить материал, уменьшая толщину укосин, например, в два раза? Если толщину укосин просто уменьшить, то может появиться опасность возникновения продольного изгиба. Чтобы избежать этого нежелательного явления, сэкономленный на одной укосине материал надо употребить для соединения середины каждой укосины с серединой горизонтального стержня фермы. В этом случае половина материала второй укосины составит чистую экономию. Ферма теперь будет выглядеть так, как показано на рисунке 29, справа. Введение дополнительных стержней упрочняет ферму. Предположим, что действующая сила стремится вызвать продольный изгиб левой укосины, при котором ее середина - пойдет вверх. Через дополнительный стержень она потянет вверх и горизонтальный стержень фермы, но он уже растянут нижними концами укосин, следователь­но, предотвратит продольный изгиб укосины. Аналогично этому будет оказано сопротивление движению середины укосины вниз. Итак, в случае действия на ферму силы деформация изгиба фермы в целом сводится к растяжению или сжатию составляющих ее стержней. Проще всего это понять, если предположить, что стержни, образующие ферму, соединены между собой шарнирами. Введение шарниров (рис. 30) не вызовет никаких изменений в работе фермы, и прочность ее останется прежней.

Реальные фермы должны обычно сопротивляться силам, приложенным не только в месте соединения их стержней. На рисунке 31 изображен тепловоз, идущий по мосту. Вес тепловоза вызывает изгиб только того стержня, по которому он движется в данный момент, а все остальные стержни фермы в это время работают на растяжение или сжатие. Таким образом, применение ферм позволяет свести изгиб балки по всей ее длине к изгибу только отдельного короткого стержня, а короткие балки хорошо противостоят изгибу, комбинация тонких балок-стержней в виде фермы позволяет перекрывать большие пролеты между опорами (100 м и более), чего нельзя добиться, применяя монолитные балки. При этом экономится большое количество материала.


Рис. 30. Введение шарниров не изменяет прочности фермы.

Приведенное здесь объяснение работы ферм вскрывает только важнейшие принципы, лежащие в основе их создания. Реальные фермы, конечно, являются более сложными сооружениями, чем ферма, изображенная на ри­сунке 30. Теория расчета ферм весьма сложна, и она еще не сказала своего последнего слова. Благодаря остроумным сочетаниям стержней разных сечений, длин инженеры непрерывно добиваются снижения веса сооружений и повышения их прочности, причем борьба идет за каждый процент и даже доли процента снижения затрат материала.

Огромный вклад в теорию расчета ферм внесли русские и особенно советские ученые. В середине прошлого столетия Дмитрий Иванович Журавский создал теорию расчета мостовых ферм. Особенно широкую известность в области изысканий рациональных типов прямолинейных ферм и теории арочных ферм приобрели труды выдающегося русского инженера, конструктора и изобретателя, почетного члена Академии наук СССР Владимира Григорьевича Шухова (1858 — 1939). Он — автор прославленной русской системы перекрытий в виде висящей крыши, автор так называемых гиперболоидальных башен, состоящих из многократных одинаковых элементов. Знаменитая радиотелевизионная башня Шухова в Москве известна всему миру. Башни такого типа получили весьма ши­рокое распространение: они применяются в качестве маяков, радио- и те­левизионных башен, вышек на судах и т. д.

Часто фермы применяют в сочетании с арками (рис. 32). Объединение фермы и арки приводит к созданию высокопрочных конструкций, позволяющих в большой степени экономить материал.

Своеобразной фермой является труба, работающая на изгиб. Прочные и легкие трубы-фермы применяются в современных конструкциях.

Иногда фермы делают из труб. Так, раму велосипеда, представляющую не что иное, как ферму, изготавливают из тонкостенных трубок, благодаря которым рама приобретает прочность и легкость.

Интересно отметить, что прежде чем люди научились строить и использовать фермы, гениальный конструктор — природа уже создала своеобразные фермы самой разнообразной конфигурации. Однако трубы хорошо сопротивляются не только деформации изгиба. Загляните под кузов автомобиля. От коробки передач к заднему мосту автомобиля идет так называемый карданный вал (рис. 33) довольно большой толщины. Для чего же его сделали таким толстым? Ответ на этот вопрос звучит парадоксально: для того, чтобы он был легче.

Карданный вал работает на скручивание (под действием собственного веса вал изгибается, но незначительно, поэтому в дальнейшем рассуждении этот изгиб мы учитывать не будем).

Деформация кручения сводится к сдвигу одних элементов материала детали по другим. При скручивании сплошного вала такой сдвиг происходит сильнее у поверхности вала, чем в его частях, лежащих около центральной оси. Именно поверхностные слои оказывают основное сопротивление скручивающим вал нагрузкам, поэтому материал середины вала целе­сообразно убрать и разместить возможно дальше от центра. Итак, валы выгоднее делать не сплошным, а трубчатыми.

Карданный вал автомобиля «Москвич» имеет диаметр около 100 мм и толщину стенок 2 мм. Если его сделать сплошным, причем равным полому валу по прочности на скручивание, то при изготовлении из того же самого материала сплошной вал должен был бы иметь диаметр 54 мм. Вес такого вала оказался бы более чем в 3,7 раза больше веса полого вала.

Казалось бы, что для получения самых прочных и легких валов их нужно выполнять в виде труб возможно большого диаметра с тонкими стенками. Однако это, как и в случае чрезмерного снижения толщины балок, может привести к продольному расслаиванию материала таких валов под действием продольных сил сдвига Д. И. Журавского.

Кроме того, в этом случае трудно будет крепить на концах таких валов шкивы, шестерни, да и возникает опасность повреждения тонких стенок вала oт случайных ударов.

Диаметр и толщину стенок полых валов в каждом частном случае выбирают исходя из конкретных условий.

Применение полых валов дает возможность делать их прочнее и в значительной степени экономить при этом материалы. Итак, мы рассмотрели только основные принципы выбора форм деталей, работающих или на сжатие, или на растяжение, или на изгиб, или на кручение. В действительности же подавляющее большинство деталей машин и сооружений вынуждено сопротивляться нагрузкам, вызывающим в них одновременно несколько деформаций разных видов. Конечно, это приводит к усложнению и выбора форм детали и ее расчета. Однако изложенные принципы являются основой такого выбора и всех расчетов на прочность.



Кроме того, мы рассматривали формы деталей, не имеющих резких переходов, канавок, выточек, сверлений, резьб и др. Как показывает практика, влияние этих факторов на прочность деталей довольно велико, и его всегда приходится учитывать.