Смекни!
smekni.com

Проект реконструкції відкритих розподільчих пристроїв 220 кВ на Бурштинській ТЕС (стр. 4 из 7)

Таблиця 18. Паспорті дані трансформатор струму IMB 245

Конструкція Баковий (U-подібний) тип
Ізоляція Масло, папір, кварцовий пісок
Номінальна напруга 242 кВ
Максимальний первинний струм До 4000 А
Струм термічної стійкості До 63 кА/1 сек
Струм електродинамічної стійкості До 160 кА
Ізолятори Фарфор
Довжина шляху витоку > 25 мм/кВ
Умови експлуатаціїТемпературний діапазонВисота установки над рівнем моря -40 °С до +40 °СМаксимально 1000 м

Номінальний імпульс квадратичного струму:

Вибраний трансформатор струму відповідає усім вимогам.

Таблиця 19. Паспорті дані трансформатора напруги CPA 245

Конструкція Ємнісний тип
ІзоляціяЕДНЭМБ Алюмінієва фольга, папір, поліпропіленова плівка і синтетичне маслоПапір, мінеральне масло
Номінальна напруга 242 кВ
Коефіцієнт напруги (Vf) До 1,9/8 годин
Ізолятори Фарфор
Довжина шляху витоку ≥ 25 мм/кВ
Умови експлуатаціїТемпературний діапазонВисота установки над рівнем моря -40 °С до +40 °СМаксимально 1000 м

Вибраний трансформатор напруги відповідає усім вимогам.

2.2.3 Характеристики вибраного обладнання

Вимикач

Вимикачі HPL можуть працювати з одно- і триполюсним управлінням. Вимикачі з однією дугогогасильною камерою на полюс можуть працювати в обох режимах управління. Вимикачі з декількома дугогогасильними пристроями допускають управління лише на один полюс.

Три полюси вимикача вмонтовуються на окремих полюсних опорах. При трьох-полюсному режимі управління полюса вимикача і привід сполучені між собою тягою. Кожен полюс вимикача обладнаний своєю окремою відключаючою пружиною.

Кожен полюс вимикача є герметичною заповненою елегазом (SF6) колонкою, яка має дугогасильний пристрій, порожнистий опорний ізолятор і корпус механізму.

Експлуатаційна надійність і термін служби елегазового (Sf6) вимикача багато в чому залежать від здатності забезпечити герметизацію об'єму з елегазом Sf6 і нейтралізувати дію вологості і продуктів розкладання газу.

•Ризик витоку газу незначний завдяки вживанню подвійних кільцевих і хрестоподібних ущільнень з каучуку нітрилу.

•У кожній дугогасительной камері поміщається фільтр (десикант) абсорбції, який поглинає вологу і продукти розкладання.

•Оскільки відключаюча здатність залежить від щільності елегазу Sf6, полюс вимикача HPL обладнаний монітором щільності.

Монітором щільності є реле тиску з температурною компенсацією. Тому попереджувальний сигнал і функція блокування включаються лише у тому випадку, коли тиск елегазу знижується із-за його витоку.

Рис 4. Автоматичний вимикач HPL-В2. 1-дугогасильна камера. 2- опорний ізолятор. 3-опорна конструкція. 4-шафа управління з приводом BLG. 5-відключаюча пружина з корпусом. 6-монітор щільності газу (з протилежного боку). 7-покажчик положення вимикача

Конструктивні особливості авто компресійного (Auto-puffertm) дугогасильного пристрою

Дугогасильні пристрої автокомпресорного типу (Auto-puffer™) (рис.5)демонструють свої розрахункові переваги при відключенні великих струмів (наприклад, номінального струму КЗ). На початку процесу відключення, авто компресорний дугогасильний пристрій починає працювати так само, як і компресійний. Відмінність же в принципі їх дії при відключенні великих і малих струмів виявляється лише після появи дуги.

Рис 5. 1. Верхній струмопровід 2. Нерухомий дугогасильний контакт 3. Рухливий дугогасильний контакт 4. Автокомпресорний об'єм 5. Компресорний об'єм 6. Клапан наповнення 7. Нерухомий поршень 8. Сопло 9. Головний нерухомий контакт 10. Головний рухливий контакт 11. Клапан автокомпресії 12. Компресорний циліндр 13. Клапан скидання надлишкового тиску 14. Нижній струмопровід

Коли дугогасильні контакти відокремлюються, між рухомим і нерухомим дугогасильними контактами утворюється дуга. Під час горіння дуги, вона в деякій мірі блокує потік елегазу (SF6) через сопло. Дуга, що горить, характеризується дуже високою температурою і потужним випромінюванням тепла і починає нагрівати елегаз (SF6) в обмеженому газовому об'ємі. Таким чином, тиск усередині як автокомпресорного, так і компресорного об'єму зростає як із-за підвищення температури від дуги, так і внаслідок стискування газу в загальному просторі між компресійним циліндром і нерухомим поршнем.

Тиск газу в автокомпресорному об'ємі продовжує підвищуватися до тих пір, поки не стане достатньо високим для того, щоб закрити автокомпресорний клапан. Весь елегаз (SF6), необхідний для гасіння дуги, тепер обмежений в замкнутому автокомпресорному об'ємі, і його тиск в цьому об'ємі може додатково підвищуватися лише із-за нагріву дугою.Приблизно у той же самий час, тиск газу в нижньому компресійному об'ємі досягає рівня, достатнього для відкриття клапана скидання надлишкового тиску. Оскільки елегаз (SF6) з компресійного об'єму виходить через клапан скидання надлишкового тиску, це знижує потребу в додатковій робочій енергії приводу, необхідній, щоб витримати стискування елегазу при одночасному збереженні швидкості розбіжності контактів, що необхідно для витримки напруги, що відновлюється на контактах.

Коли струм проходить через нульове значення, дуга стає порівняно слабкою. У цей момент потік стислого елегазу (SF6) виходить з автокомпресорного об'єму через сопло і гасить дугу.

При операції включення відкривається клапан наповнення і елегаз поступає як в компресорний, так і автокомпресорний об'єми.

При відключенні слабких струмів автокомпресорні дугогасильні пристрої працюють, по суті, аналогічно компресійним пристроям. Тобто створюваний елегазом тиск недостатній для закриття автокомпресорного клапана. В результаті фіксований автокомпресорний об'єм і компресорний об'єм формують один загальний об'єм стискування. В цьому випадку тиск елегазу (SF6), необхідний для переривання дуги, досягається звичайним механічним способом від енергії приводу, як в звичайному компресійному пристрої дугогасіння.

Проте, на відміну від компресорного пристрою, автокомпресорний пристрій потребує меншої енергії приводу для механічного створення тиску елегазу при відключенні струмів, менших номінального значення струму КЗ (тобто порядку 20%–30%).

У розімкненому положенні, між нерухомим і рухливим контактами існує достатній ізоляційний проміжок, здатний забезпечити номінальні рівні діелектричної міцності.

При операції включення відкривається клапан наповнення і елегаз (SF6) поступає в автокомпресорний і компресорний об'єми. Оскільки для відключення слабких струмів досить середнього рівня тиску елегазу (SF6), що створюється механічним способом, а для переривання великих струмів відключення використовується теплова енергія дуги, що створює додатковий тиск елегазу в обмеженому об'ємі, для роботи автокомпресорного дугогасильного пристрою потрібна менша (приблизно на 50%) робоча енергія приводу, чим для роботи компресорного пристрою гасіння дуги.

Здатність до комутації струмів

Всі вимикачі типа HPL здатні відключати струми КЗ в течію максимум 40 мс. Завдяки оптимізації конструкції контактів і швидкості їх руху ми можемо також гарантувати відключення ємкісних струмів з дуже низькою вірогідністю повторних пробоїв.

При відключенні індуктивних струмів величину перенапружень невелика завдяки оптимальному гасінню дуги під час переходу струму через нульове значення.

Діелектрична міцність

Вимикач HPL володіє високою діелектричною міцністю навіть при атмосферному тиску елегазу ЗР6 унаслідок оптимізації розміру міжконтактного проміжку.

Стабільність часу спрацьовування

Для керованої комутації особливо поважно, щоб час операцій включення і виключення був постійним. Ми можемо гарантувати точність витримки часу ±1 мс для всіх вимикачів HPL.

Корозійна стійкість

Вибір алюмінію і його сплавів для виготовлення компонентів (корпуси приводів, високовольтні апаратні виводи, шафи) забезпечують високу міру корозійної стійкості без необхідності додаткового захисту. Для експлуатації в екстремальних зовнішніх умовах вимикачі серії HPL можуть поставлятися із захисними лакофарбними покриттями. Опорна конструкція і захисні труби для тяги механізмів управління виконані із сталі гарячого цинкування.

Стійкість до дії кліматичних чинників

Виключателі HPL призначені і застосовуються для роботи в різних кліматичних умовах, від полярних до пустинних.

Сейсмостійкість

Всі вимикачі типа HPL мають механічну міцну конструкцію завдяки оптимізації конструкції полюсів і опор, розрахованих на стійкість до сейсмічних прискорень до 3 м/с 2, (0,3д) без додаткових запобіжних засобів. Завдяки посиленню конструкції опор і ізоляторів або вживанню амортизаторів сил землетрусу, або поєднанню перерахованих заходів, вимикачі можуть витримувати сейсмічні прискорення набагато вище 5 м/с2 (0,5 д).

Мінімальний об'єм вимог до технічного обслуговування