Смекни!
smekni.com

Розробка інвертора напруги для апаратури зв'язку (стр. 3 из 12)

В даний час є статичні перетворювачі з вихідною напругою формою близьким до синусоїдального.

Конвертор - перетворювач постійної напруги в змінну, але іншого рівня (з проміжним перетворенням вхідної напруги в змінне і трансформацією до потрібного рівня).

Інвертор - пристрої, що перетворюють постійний струм в змінний з незмінною або регульованою частотою і що працюють на автономне (не пов'язану з мережею змінного струму) навантаження. Як навантаження автономного інвертора може виступати як одиничний споживач, так і розгалужена мережа споживачів.

2.1 Джерела безперебійного та гарантованого електроживлення

Під гарантованим живленням (ГЖ) варто розуміти забезпечення апаратури зв'язку й засобів автоматизації електроенергією в будь-яких режимах роботи системи електроживлення, за винятком короткочасних перерв при роботі комутаційних пристроїв, пуску автоматизованих дизельних електроагрегатів і струморозподільної мережі (СРС).

Таблиця 2.1.1 Основні види неполадок у мережах електроживлення і їх наслідки.

Найменування неполадки Визначення Можлива причина Наслідки
Сплески напруги Короткочасні підвищеннянапруги в мережі на величину більше 10%на час більше 20 мс. Відключення енергоємногообладнання,короткі замикання вмережі електропостачання Втрата інформації,вихідапаратури з ладу.
Високовольтні викиди Короткочасні імпульсинапруги до 6000 Ві тривалістю до 10 мс. Удар блискавки, іскрінняперемикачів,статичний розряд. Втрата інформації,вихід з ладуелементів апаратури.
Просідання напруги Короткочасне зниженнянапруги до величини менш80-85% від номінального Включення енергоємногообладнання, запускпотужних електродвигунів. Втратаінформації, вихідапаратури з ладу.
Високочастотний шум Радіочастотні перешкоди.Перешкодиелектромагнітногоабо іншого походження Електромотори, реле,силова комутаційнатехніка,передавачі, магнітні бури. Вихід з ладу дискових накопичувачів, зависання комп'ютерів.
Вибіг частоти Відхід частоти наВ Величину більше3Гц відномінального (50 Гц). В Підключення енергоємного обладнання, запускпотужних електродвигунів, перевантаженняв лінії електроживлення. Вихід з ладу дисковихнакопичувачів, зависання комп'ютерів,втрата даних
Підсадження напруги Спадання напруги вмережі на тривалий час Нестабільність генератора. Втрата даних, привихіді з ладу апаратури.
Провалля напруги Відсутність напруги вЕлектромережіпротягом більше 40 мс. Неполадки в лінії,спрацьовуваннясистем захисту. Втрата даних, вихід зладу апаратури.

Під безперебійним живленням (БЖ) варто розуміти забезпечення засобів зв'язку й автоматизації електроенергією в будь-яких режимах роботи СЕЖ, за винятком аварій агрегатів безперебійного живлення й струморозподільної мережі.

Обчислювальні пристрої, об'єднані в мережі, більше піддані помилкам через проблеми з електроживленням. Це відбувається через те, що, наприклад, з різних причин обладнання мережних вузлів зберігає дані різного роду в оперативній пам'яті, і ймовірність втрати або спотворення цих даних, а також імовірність збою в роботі обладнання істотно зростає при зниженні якості електроживлення. Фінансові втрати від таких збоїв тим більше, чим більш відповідальну функцію виконує мережний вузол. У таблиці представлені основні види неполадок у мережах електроживлення і їх наслідки. Для забезпечення споживачів гарантованим живленням використовуються резервні джерела живлення (резервна мережа або резервна електростанція). Запровадження в дію резервних джерел відбувається автоматично. Пристрою, що забезпечують автоматичне включення резервного джерела, одержали назву пристроїв автоматичного включення резерву. Принцип побудови системи гарантованого живлення за допомогою пристроїв АВР показаний на Рис.1.1 Пристрої АВР складаються із двох контакторів - КМ1 (нормальної роботи), КМ2 (аварійні роботи) і ланцюгів керування цими контакторами, які забезпечують контроль напругі джерел живлення, їхнє перемикання й блокування.

Рис. 1.1 Принцип побудови системи гарантованого живлення з допомогою АВР

З розглянутого принципу видно, що в кожному разі перехід на резервне джерело (мережа, агрегат) пов'язаний з повною перервою в живлення споживачів. Тривалість цієї перерви залежить від типу використовуваних пристроїв АВР і ступеня автоматизації резервних електростанцій. Існуючі пристрої АВР із використанням електромеханічних реле й контакторів забезпечують перемикання на резервну мережу за 0,6.0…0,7с.

При аварійному переході від джерел зовнішнього електропостачання на резервну автоматизовану по другому й третьому ступені електростанцію перерва може досягати 15.60…60 с.

Пристрої, що забезпечують безперебійність живлення засобів зв'язку й автоматизації при аварійних режимах роботи зовнішніх джерел і резервних електростанцій називаються агрегатами безперебійного живлення. Деякі типи АБЖ на практиці одержали назву джерел безперебійного живлення (ДБЖ).

Досвід і практика застосування сучасної апаратури зв'язку й засобів автоматизації при живленні їх від електромереж загального призначення 220/380 В показують, що АБЖ необхідно застосовувати не тільки й не стільки тоді, коли напругу в мережі повністю зникає, але головним чином для забезпечення необхідного апаратурі якості електроенергії. Про це свідчать середні статичні дані розподіли несправностей в електромережах 220/380 В, (табл.2.2).

З табл.1.2 видно, що така несправність, як відключення (провалля) напруги мереж, у загальному обсязі всіх несправностей займає всього лише близько 12 %.

Таблиця 1.2

Розподіл несправностей в електромережах 230/380 В

%
Тривале або короткочасне відключення напругиВисокочастотні перешкодиВисоковольтні викидиПровали (відключення)СпотворенняСплески 4520161252
Всього 100

Зараз на практиці знаходять застосування два типи АБЖ: електромашинні АБЖ і статичні ДБЖ із випрямлюючи-інверторними перетворювачами.

На нашому підприємстві використовуються ДБЖ із випрямлюючи-інверторними перетворювачами.

У цей час такі ДБЖ розроблені й впроваджуються в СЕЖ вузлів зв'язку й об'єктів автоматизації ДБЖ на основі статичних перетворювачів, які практично за всіма показниками перевершують електромашинні ДБЖ. Вони мають більш високий ККД, значно менші габарити й масу, більший термін служби. У них відсутні обертові частини, що істотно спрощує експлуатаційне обслуговування й зменшує шум при роботі.

Аналіз всіх типономіналів сучасних статичних ДБЖ показує, що за принципом роботи й можливостям їх можна класифікувати за трьома типами: перемикаються з мережним фільтром, що перемикаються з мережним стабілізатором і фільтром, з подвійним перетворенням енергії.

Перерва в електроживленні при перемиканні на резервне джерело завдяки використанню електронних ключів вдалося звести до 2,5…5 мс. Звичайно така перерва не страшна для споживачів, що мають безтрансформаторний вхід джерел вторинного електроживлення. Такими споживачами є більшість сучасних персональних комп'ютерів, для яких в основному й призначений даний тип ДБЖ.

2.2 Електромеханічні перетворювачі напруги

Електромеханічні перетворювачі енергії з обертальним рухом - електричні машини - складають найбільш важливий клас компонент електромеханічних систем. Електричні машини вельми всілякі по конструкції і призначенню, процеси в них відрізняються великою складністю. Електромеханічні перетворювачі енергії, дія яких заснована на законах електромагнітної індукції, підкоряються принципу оборотності. Один і той же пристрій може працювати як електрогенератор, якщо до нього підводиться механічна енергія, або як двигун, якщо до нього підводиться електрична енергія. Електромеханічні перетворювачі енергії - електричні машини працюють в космосі, глибоко під землею і у воді. Електромеханічні перетворювачі енергії, що працюють в космосі, знаходяться в умовах невагомості і мають сумірні моменти інерції якоря і індуктора, тому можуть рухатися в просторі обоє частини машини. Електрична машина в космосі отримує декілька мір свободи, і рівняння електромеханічного перетворення енергії ускладнюються, набуваючи загальнішого вигляду. Співвідношення моментів і швидкостей в різних режимах роботи двигунів. | Механічні характеристики двигуна і механізму в загальній системі координат. Електромеханічним перетворювачем енергії в приводах є електрична машина. У електромеханічних перетворювачах енергії частини, що взаємно переміщаються, розділені повітряним зазором. У повітряному зазорі зосереджена енергія електромагнітного поля, що зв'язує обмотки, що обертається і нерухому. Далі читач переконається в тому, що саме в повітряному зазорі відбувається перетворення енергії з електричної в механічну і назад. У цій книзі будуть розглянуті машини, в яких визначає є магнітне поле.

У практиці вивчення електромеханічних перетворювачів енергії знайшов вживання і інший вигляд моделювання, використання якого частенько пред'являє менш жорсткі вимоги до знання параметрів, а у ряді випадків дозволяє взагалі відмовитися від необхідності знаходження аналітичного опису явища. Цей метод - фізичне моделювання - встановлює відповідність між об'єктами однієї фізичної природи. Величини моделі, що кількісно характеризують явище, при цьому можуть вельми істотно відрізнятися від аналогічних величин оригінала. Якщо предметом дослідження є потужні електричні машини і системи, масштаби звичайна істотно менше одиниці; при моделюванні пристроїв малих розмірів і потужностей доцільно масштаби моделювання вибирати великими одиниці. Асинхронна машина є загальним електромеханічним перетворювачем енергії. Дійсно, вона може працювати як наступних перетворювачів.