Смекни!
smekni.com

Розробка інвертора напруги для апаратури зв'язку (стр. 4 из 12)

Головними функціональними елементами є електромеханічні перетворювачі енергії - ЕП змінного і постійного струму. Робочі процеси ЕП базуються на фундаментальних законах електродинаміки і механіки. Для аналізу процесів в ЕПЕ можуть застосовуватися методи теорії електромагнітного поля і методи теорії електромеханічних систем. Далі використовується головним чином другий підхід, який дозволяє записати диференціальні рівняння для перехідних процесів електричних ланцюгів і руху ЕПЕ. Загальна структурна схема електричного приводу. Таким чином, ЕД є електромеханічним перетворювачем енергії. Електромагнітна потужність ЕПЕ, як і будь-якого електромеханічного перетворювача енергії, залежить від струму в обмотці якоря. Проведений розгляд показує, що узятий нами електромеханічний перетворювач енергії задовольняє всім основним вимогам, сформульованим на початку цього параграфа, і може бути використаний як кроковий двигун. Необхідно, проте, встановити циклічну повторюваність станів перетворювача і виявити види циклів. Однією з тенденцій розвитку електроприводу є поступове зближення електромеханічного перетворювача енергії (електричної машини) і споживача цієї енергії машини-знаряддя. У міру такого зближення як електрична машина, так і машина-знаряддя випробовують весь більший взаємний вплив.

Принципові схеми ЕПЕ з обертальним (а. Перехідний процес в ЕПЕ, як і в будь-якому електромеханічному перетворювачі енергії, описується системою диференціальних рівнянь електричної рівноваги і динаміки руху ротора. Значення відносного навантаження, як і в будь-якому електромеханічному перетворювачі енергії, впливає на ефективність роботи ЕПЕ. У двох крайніх положеннях:

1 - коротке замикання

2 - холостий хід, енергія в навантаженні не виділяється. Магнітозв'язність ланцюга. Для багатьох електромеханічних перетворювачів енергії характерне взаємне переміщення котушок. Хоча визначення повної картини поля реальної машини, що обертається, є практично неможливим, математична модель електромеханічного перетворювача енергії дозволяє вирішувати багато завдань, задаючись напругою на вхідних затисках перетворювача. Виходячи в своїх виставах з картини поля в повітряному зазорі, робимо в рівняннях незалежно змінними напруги на статорі або роторі. Електромашинний підсилювач (ЕМП) з поперечним полем є електромеханічним перетворювачем енергії, якого можна використовувати як силовий перетворювач в установках малої потужності до 10 кВт і як проміжний підсилювач в установках великої потужності. Реалізація елементів ЕП. Система управління ЕП - сукупність пристроїв, що управляють і інформаційних, і пристроїв сполучення ЕП, призначена для управління електромеханічним перетворювачем енергії з метою забезпечення заданого руху виконавського органу робочої машини. Тут лише коротко розглянемо вплив зворотних зв'язків на характеристики машини в тій мірі, скільки це необхідно для розуміння роботи електромеханічних перетворювачів енергії. Математичні моделі електричних машин в перехідних і сталих режимах; узагальнені досягнення в області аналізу і синтезу електромеханічних перетворювачів енергії; показано вживання нових математичних методів у вирішенні оптимізаційних завдань; освітлені останні досягнення у вживанні обчислювальних машин для вирішення завдань електромеханіки. Моделі електромеханічних систем складаються, як і при прямій реалізації, а саме з моделей електричного ланцюга і механічної системи, об'єднаних моделлю електромеханічного перетворювача енергії, - електричної машини. Для систем приводу змінного струму модель електричної машини складається по рівняннях. Для об'єднання електричної і механічної частин тут не вимагається джерел струму, оскільки струми і моменти зображаються напругою.

Конструкція генератора братів Пікси.

У останні десятиліття з'явилися нові конструктивні видозміни електричних машин: лінійні двигуни, машини з декількома мірами свободи, з рідким і газоподібним ротором і ін. Інженер-електромеханік повинні уміти підійти до створення і дослідження будь-якої електричної машини - електромеханічного перетворювача енергії, тому основи загальної теорії електромеханічного перетворювача енергії повинні викладатися не лише в спеціальних курсах, але і в загальному курсі електричних машин. Дані хвилевих крокових електродвигунів для прецизійних швидкодіючих систем управління, автоматичних цифрових стежачих систем, за устаткування. Електромеханічний перетворювач енергії в цих двигунах поєднується з одноступінчатою хвилевою зубчастою передачею. Двигуни характеризуються: високими точністю, швидкодією, роздільною здатністю; підвищеною надійністю, обумовленою відсутністю швидко вращающихся частин; великим моментом, що обертає, при малих масі і габаритних розмірах, що дуже важливе для їх вживання в інших двигунів закрите, кріплення - фланцеве, можуть займати в просторі будь-яке робоче положення, режим роботи - тривалий. Енергія з мережі (від включеного десь генератора) спочатку запасається в магнітному полі (у електричній машині енергія електромагнітного поля зосереджена, в основному, в повітряному зазорі), а потім перетвориться в механічну і теплову. Тому в ненасиченому лінійному електромеханічному перетворювачі енергії лише половина енергії, що забирається з мережі, перетвориться в механічну енергію, якщо вважати, що електрична енергія, що перетворюється в теплову, дорівнює нулю. Фізично це означає, що в мить, коли машина здійснює механічну роботу, така ж кількість енергії має бути запасена в електромагнітному полі. Пропонована увазі читачів книга присвячена математичному опису процесів, що відбуваються в електричних машинах. Основна увага приділена диференціальним рівнянням електромеханічних перетворювачів енергії і рішенню їх за допомогою аналогових і цифрових обчислювальних машин. У класичних підручниках по електричних машинах виклад теорії починається з комплексних рівнянь, схем заміщення і векторних діаграм. Почавши виклад з диференціальних рівнянь, що описують як динамічні режими, так і сталі, підвести читача до комплексних рівнянь електричних машин. Лінійні електричні машини застосовуються практично лише в руховому режимі. У генераторному режимі знаходить вживання МГД-генератор - електромеханічний перетворювач енергії. Але при пульсаціях магнітного поля або швидкості плазми на виході можна отримати змінні напруга і струм. Такий генератор за принципом дії і конструкції близький до лінійних двигунів і МГД-насосам.

РОЗГЛЯНЕМО ПРИКЛАД ЕЛЕКТРОМЕХАНІЧНОГО ПЕРЕТВОРЮВАЧА.

Найбільш повні і різносторонні характеристики електроприводів при їх синтезі і аналізі можуть бути отримані у разі, коли електрична машина розглядатиметься як узагальнена. Для подальшого аналізу розглянем машину з трифазними обмотками на статорі і роторі, які створюють магнітні поля, що складаються з головних полів і полів розсіяння. Головним полем - називають поле, магнітний потік якого бере участь в електромеханічному перетворенні енергії. При цьому його можна представити як два взаємодіючі поля: головного поля обмотки статора і головного поля роторної обмотки. У свою чергу головне поле обмотки статора або роторної можна представити як результуюче поле, утворене дією окремо кожної фази цих обмоток. Останні поля, які не створюють головного поля, тобто безпосередньо не беруть участь в електромеханічному перетворенні енергії, називають-полями розсіяння. Представимо електричну машину у вигляді, зручному для здобуття вихідних положень електромеханічного перетворення енергії. Виходячи з того, що всякий результуючий вектор сили, що намагнічує, від дії сил, що намагнічують, в багатофазній обмотці можна замінити дією однієї обмотки з таким же модулем сили, що намагнічує, вектор якої направлений в ту ж сторону, що і вектор результуючих сил багатофазної обмотки, представимо багатофазну узагальнену машину її еквівалентом - однофазною машиною. При цьому виходитимемо з того, що магнітне поле статора і ротора, що обертається, створюватиметься надалі трифазною обмоткою. Така машина і складові її магнітного потоку представлені на рис.1, де прийняті наступні позначення:

U1 і U2 - напруга, прикладена до статору і роторній обмоткам відповідно;

Ф1 - повний потік, пронизливий обмотку статора і викликаний всіма струмами в обмотках електричної машини;

Ф2 - повний потік, пронизливий обмотку ротора і викликаний всіма струмами в обмотках електричної машини;

Ф11 - частина потоку Ф1, викликаного струмом І1;

Ф 22 - частини потоку Ф2, викликаного струмом І2;

Ф12 - частина потоку Ф1, викликаного струмом І2;

Ф 21 - частини потоку Ф2, викликаного струмом І1;

Ф 01 - потоку розсіяння обмотки статора, викликаного струмом статора І1, і пов'язаний з обмоткою статора, але не зчеплений з обмоткою ротора;

Ф 02 - потоку розсіяння обмотки статора, викликаного струмом ротора І2, і пов'язаний з обмоткою ротора, але не зчеплений з обмоткою статора;

Рис.1. Магнітні потоки, утворені обмотками статора і ротора в електричній машині:

Ф - взаємний потік, зчеплений з обмоткою статора і з обмоткою ротора, тобто загальний для обох обмоток потік, створюючий головне поле і що бере участь в електромеханічному перетворенні енергії.