Смекни!
smekni.com

Розробка інвертора напруги для апаратури зв'язку (стр. 8 из 12)

Як і для ємкісного навантаження, для навантаження з випрямлячем на вході, високий рівень струмів при джерелі напруги у вигляді модифікованої синусоїди створює підвищений акустичний ефект при роботі інвертора. Спектральний склад вихідного струму інвертора з формою вихідної напруги у вигляді модифікованої синусоїди при роботі на навантаження з випрямлячем на вході вельми широкосмуговий, а амплітуда струму вельми велика, тому звуковий ефект вироблюваний цим струмом вельми гучний і неприємний на слух. При цьому справляти звукове враження може будь-який елемент схеми, через який протікає вихідний струм інвертора, цей елемент може знаходитися в інверторі або в електроприладі, що підключається, або в сполучних дротах.

2.4 Конвертори - перетворювачі постійної напруги

Часто при живленні електронних пристроїв ІП є низьковольтними, а для живлення ланцюгів вжитку потрібна значна напруга. При цьому удаються до перетворення напруги. Для цього використовують інвертори і конвертори. Використовуються електромагнітні перетворювачі, віброперетворювачі і статичні перетворювачі.

Електромагнітні перетворювачі - виробляють напругу синусоїдальної форми, тоді як напівпровідникові і віброперетворювачі - напруга прямокутної форми. В даний час є статичні перетворювачі з вихідною напругою формою близьким до синусоїдального. Недолік електромагнітного перетворювача: великі габарити і маса.

Віброперетворювачі - малопотужні і малонадійні. Тому найбільше вживання знаходять напівпровідникові перетворювачі з малими габаритами і масою, високим ККД і експлуатаційною надійністю.

Побудова перетворювачів на тиристорах і транзисторах слід пов'язувати з величиною живлячої напруги, необхідної потужності, характером зміни навантаження.

Транзисторні перетворювачі напруги

Підрозділяються за способом збудження на 2 типи: з самозбудженням і перетворювачі з посиленням потужності.

Транзистори можуть включатися за схемою з ОЕ, ОК, Про, але найширше використовуються включення з ОЕ, оскільки в цьому випадку реалізується максимальне посилення транзисторів по потужності і тим більше просто досягаються умови самозбудження.

Перетворювачі з самозбудженням виконуються на потужних, до декількох десятків ватів, за однотактними і двотактними схемами. Проста схема однотактного перетворювача є релаксаційним генератором із зворотним зв'язком Рис.2.4.1.

Із

Рис.2.4.1 З зворотним включ. діода Рис.2.4.2 З прямим включ. діода.

При підключенні напруги живлення через резистор на базу транзистора подається потенціал, що спирає. Транзистор відкривається і через первинну обмотку Wк трансформатора протікає струм, який викликає магнітний потік в магнітопроводах транзистора. Напруга, що з'являється при цьому, на обмотці Wк трансформується в обмотці зворотного зв'язку Wб, полярність підключення якої така, що вона сприяє відмиканню транзистора. Коли струм колектора досягає свого максимального значення: Iк=Iб*h21э, наростання магнітного потоку припиниться, полярність напруги на обмотках трансформатора змінюється на протилежне і відбувається лавиноподібний процес замикання транзистора. Напруга на вторинній обмотці трансформатора має прямокутну форму.

Полярність підключення силового діода випрямляча на вторинній обмотці трансформатора визначає спосіб передачі енергії в навантаження. Діод відкривається коли закривається транзистор, заряджає конденсатор, який підтримує постійність струму в навантаженні.

При прямому включенні діода Рис.2.4.2 передача енергії джерела живлення Uп в навантаження Rн відбувається в період часу tu, коли транзистор і силовий діод VD1 відкриті. Конденсатор згладжуючого фільтру Cф при цьому заряджає випрямленою напругою до Uп.

У перебігу паузи tп, коли транзистор закритий, ланцюг струму Iн замикається через дросель Lф і блокуючий діод VD2, як і в імпульсному стабілізаторі з послідовним регулюванням.

У однотактних перетворювачах трансформатор працює з подмагничиванием, для боротьби з яким можна застосовувати сердечник із зарядом. Проте він не личить при використанні тори. транзистора. У нашому випадку використовується блокуючий конденсатор, який в перебігу паузи tп разряжаетсячерез обмотку W1, перемагнічувавши сердечник струмом розряду.

Ємкість Cбл. Вибирається з умови, аби при максимальному коефіцієнті заповнення цmax тривалість паузи tп була не менше чверті періоду коливального контура L, Cбл.

Такий перетворювач із зворотним включенням діода забезпечує розв'язку і захист вихідної напруги від перешкод по вхідних шинах живлення.

Транзисторні перетворювачі визначаються по наступних формулах:

Uп=Uп (Iкм/2Iн-W1/W2)

tu = Iкм*L1/Uп

tп = Iкм*L2/Uн*W2

ц = fп*Iкм*L1/Uп = tu/ (tu+tп)

Кращі массогабаритные показники мають двотактні перетворювачі із знижувальним трансформатором.

Трансформатори виконуються на магнітопроводі з прямокутною петлею гістерезису. Тут також використовується позитивна ОС. Генератор працює таким чином. При включенні напруги живлення Uп із-за неідентичності параметрів один з транзисторів, наприклад VT1, починає відкриватися і його колекторний струм збільшується. Обмотки ОС Wб підключені так, що наведене в них ЕДС повністю відкриває транзистор VT1 і закриває транзистор VT2.

Перемикання транзисторів починається у момент насичення транзистора. Внаслідок цього наведені у всіх обмотках трансф. Напруга зменшується до нуля, а потім змінює свою полярність.

Тепер на базу раніше відкритого транзистора VT1 подається негативна напруга, а на базу раніше закритого транзистора VT2 поступає позитивна напруга і він починає відкриватися. Цей регенеративний процес формування фронту вихідної напруги протікає дуже швидко. Надалі процеси в схемі повторюються.

Частота перемикання залежить від значення напруги живлення, параметрів трансформатора і транзисторів і розраховуються по формуле:

fп= ( (Uп-Uкэ нас) *10000) /4*B*s*Wк*Sc*Kc.

Такий режим економічніший, ніж при перемиканні за рахунок граничного струму колектора і робота перетворювача стійкіша.

Такі перетворювачі використовуються як задаючі генератори для підсилювачів потужності і як автономні малопотужні джерела електроживлення. Основні достоїнства: простота схеми, а також нечутливість до короткого замикання в ланцюзі навантаження.

Недоліком перетворювача з сердечником, що насичується, є наявність викидів колекторного струму у момент перемикання транзисторів, що збільшує втрати а перетворювачі.

Напруга на закритому транзисторі може досягати значення:

Uкэm = (2,2: 2,4) Uпmax

дві напруга це сума Uп+ЭДС на непрацюючій обмотці, крім того враховуються викиди напруги під час перемикання. Для зменшення останніх в схему інколи включають шунтуючі діоди.

При перетворенні великих потужностей найбільшого поширення набули перетворювачі з використанням підсилювача потужності. Як задаючий генератор можна використовувати перетворювачі з самозбудженням. Вживання таких перетворювачів доцільне якщо необхідно забезпечити постійність частоти і напруги на виході, а також незмінність форми кривої змінної напруги при зміні навантаження перетворювача.

В разі високої вхідної напруги застосовують мостові підсилювачі потужності.

Передбачимо, в перший напівперіод одночасно працюють транзистори T1,T2. У другій T2,T3. Напруга живлення прикладається до первинної обмотки транзистора, його полярність міняється кожен напівперіод. Напруга на закритому транзисторі дорівнює напрузі джерела живлення. Вихідний транзистор працює в ненасиченому режимі, виконується він з матеріалу з непрямокутної петлі гістерезису.

Перетворювачі на тиристорах.

Тиристори на відміну від транзисторів мають однобічне управління. Для замикання тиристорів в схемах перетворювачів використовуються реактивні елементи в основному у вигляді комутуючих конденсаторів. Рис.2.4.3 графік перетворювачів на тиристорах

При відмиканні першого тиристора ємкість заряджає до напруги 2Uп. При відмиканні другого тиристора напруга конденсатора прикладається у зворотному напрямі до першого транзистора, під дією його він закривається. Конденсатор перезаряджається, і напруга на його обмотках і на первинній обмотці тиристора міняє знак (потенціали показані на схемі в дужках). У наступний напівперіод знов відмикається тиристор T1 і процес повторюється.

Для забезпечення замикання тиристорів необхідно, аби енергія комутуючого конденсатора була достатньою для того, щоб в процесі перезаряду зворотна напруга на тиристорах падала досить повільний і встигло б забезпечити відновлення їх замикаючих властивостей.

Рис.2.4.3 Графік перетворювачів на тиристорах

Недоліком такого інвертора є сильна залежність вихідної напруги від струму навантаження.

Для зменшення впливу характеру і величини навантаження на форму і величину вихідної напруги застосовують схеми із зворотними діодами, які у свою чергу необхідні для повернення реактивної енергії, накопиченої в індуктивному навантаженні і реактивних комутуючих елементах в джерелі живлення перетворювача.

3. Синтез структурної схеми

Відповідно до технічного завдання необхідний пристрій, в якого на виході буде напруга та струм. У зв'язку з цим пристрій повинен живитися від акумулятора із постійною напругою 9…14В. Для виконання покладених на пристрій завдань він повинен містити вихідний підвищувальний трансформатор, який перетворюватиме постійну напругу 12Вв змінну 220В. Для забезпечення захисту пристрою від неправильно увімкненої напруги живлення, момент включення пристрою, необхідний пристрій захисту, який забезпечить захист пристрою. Щоб перетворювати постійну напругу в змінну необхідний пристрій перетворення постійної напруги в змінну, а також пристрій управління цим перетворювачем. Для здобуття необхідної нам постійної напруги на виході нам необхідний вихідний підвищувальний трансформатор. Для управління всіма пристроями необхідний пристрій управління, який включає в себе (мультивібратор, та змінні резистори).