Смекни!
smekni.com

Физическая основа и виды тепловых двигателей (стр. 6 из 10)

Однако такие двигатели не всегда выгодны экономически. В этом случае для огромных транспортных самолетов лучше использовать турбовинтовые двигатели (ТВД). Последние снабжены винтом (или винтами) на валу двигателя впереди компрессора. Для этого нужно удлинить вал, соединяющий турбину с компрессором, добавить редуктор, который снизит частоту вращения винта (иначе воздушный поток станет срываться с лопастей и пропеллер в основном будет вращаться вхолостую). Сила тяги складывается из тяги, возникающей как сила реакции при истечении газов из сопла, и из тяги винта (винтов), вращаемого специальной газовой турбиной или той же, которая вращает компрессор. При малой скорости полета основная доля тяги получается от работы винтов, на большой скорости – за счет силы реакции.

4.3.2 Ракетные двигатели.

В отличие от ВРД все компоненты рабочего тела ракетного двигателя (РД) находятся на борту аппарата, оснащенного им.

РД в большинстве случаев используются на высокоскоростных летательных аппаратах. Ракетный двигатель обладает многими примечательными особенностями, но главная из них заключается в следующем. Ракете для движения не нужны ни земля, ни вода, ни воздух, так как она движется в результате взаимодействия с газами, образующимися при сгорании топлива. Поэтому ракета может двигаться в безвоздушном пространстве.

РД подразделяются на двигатели, работающие на жидком топливе (горючее и окислитель), - жидкостные ракетные двигатели (ЖРД), на двигатели, работающие на твердом топливе, - пороховые реактивные двигатели (ПРД), разновидностью которых являются твердотопливные ракетные двигатели (РДТТ), и на двигатели, работающие на гибридном ракетном топливе (ГРД).

В стадии исследования, разработки и частичного применения находятся ракетные двигатели:

· ядерные (собственно ядерные, термоядерные, радиоизотопные). Тяга двигателей создается за счет энергии, выделяющейся в результате реакции деления ядер тяжелых элементов (собственно ядерный), реакции управляемого синтеза ядер легких элементов (термоядерный) или в результате радиоактивного распада изотопов (радиоизотопный);

· электрические (электромагнитные или плазменные, электростатические, электротермические). Для создания тяги с помощью рабочего тела используется электрическая энергия бортовой энергоустановки летательного аппарата;

· газоаккумуляторные (сублимационные и др.). Тяга двигателя создается истечением газов или других продуктов через реактивное сопло за счет потенциальной энергии самих продуктов, принудительно созданной до полета летательного аппарата;

· фотонные. Тяга двигателя создается направленным истечением квантов электромагнитного излучения – фотонов. Фотонный двигатель имеет предельно возможный удельный импульс, так как скорость истечения фотонов равна скорости света;

· комбинированные.

По назначению и характеру использования в ракетно-космической технике ракетные двигатели подразделяются на основные (маршевые, стартовые) и вспомогательные (рулевые, корректирующие, микроракетные, тормозные и др.).

Жидкостные ракетные двигатели применяются на ракетах-носителях космических летательных аппаратов и космических аппаратах в качестве маршевых, тормозных и управляющих двигателей, а также на управляемых баллистических ракетах. ЖРД как основной самолетный двигатель почти не применяется из-за большого расхода топлива.

ЖРД состоит из одной или нескольких камер сгорания с индивидуальным или общим реактивными соплами, системы подачи компонентов ракетного топлива, органов регулирования и вспомогательных агрегатов.

ЖРД подразделяются:

· по типу используемого ракетного топлива – однокомпонентные, двухкомпонентные (горючее и окислитель) и многокомпонентные;

· по системе подачи топлива – вытеснительные (путем наддува баков, в которых содержится топливо, воздухом, газообразным азотом или продуктами сгорания самих компонентов топлива) и турбонасосные (в составе газовой турбины и топливных насосов на общем валу);

· по схеме использования топлива – с дожиганием и без дожигания генераторного газа.

В качестве жидкого ракетного топлива используются:

· в качестве горючего – легковоспламеняющиеся и, как правило, токсичные вещества углеводородного состава (спирты, типа керосин, жидкий водород) и азотоводородного состава (амины, гидразин, несимметричный диметилгидразин (так называемый, гептил), аммиак и др.);

· в качестве окислителя – высокоагрессивные и токсичные вещества (жидкий кислород, четырехокись азота и др.).

Твердотопливные ракетные двигатели используются в баллистических, зенитных, противотанковых и других ракетах военного назначения, а также на ракетах-носителях и космических летательных аппаратах. Небольшие твердотопливные двигатели применяются также в качестве ускорителей при взлете самолетов.

РДТТ состоит из корпуса (камеры сгорания), в котором размещен весь запас ракетного топлива в виде заряда, реактивного сопла, воспламенительного устройства, а также может содержать устройство для регулирования тяги по величине и направлению и устройство «отсечки» тяги (выключения двигателя).

Твердое ракетное топливо содержит окислитель и горючее в твердой фазе. По сравнению с жидким ракетным топливом имеет преимущества: возможность длительного хранения ракеты в снаряженном состоянии и высокую плотность. Основные недостатки: трудность управления процессом сгорания и относительно невысокая теплота сгорания.

4.4 Термомагнитные двигатели

Тепловые двигатели с внешним подводом тепла.

По данным агенства экономических новостей, наиболее перспективными разработками в настоящее время являются термомагнитный двигатель и тепловой двигатель с внешним подводом теплоты.

Термомагнитный двигатель выгодно отличается простой конструкцией, в котором тепловая энергия горячих газов, получаемых от сгорания топлива, переходит в механическую энергию за счет фазового перехода материала ротора из магнитного состояния в немагнитное и обратно. Двигатель может иметь коэффициент полезного действия выше, чем у двигателей внутреннего сгорания и для своей работы может даже использовать низкотемпературные газы (порядка 100 град. С), которые другие двигатели не могут использовать совсем или использовать с меньшей эффективностью.

Используя горячие газы, полученные сжиганием жидкого или газообразного топлива, предложенный двигатель может заменять двигатели внутреннего сгорания. Однако новый двигатель гораздо проще по конструкции и работает без шума, что является его большим достоинством.

Новый двигатель может также работать, используя горячие газы, являющиеся отходами при работе различных высокотемпературных агрегатов: металлургических печей, котельных установок и т.п.

Рассматриваемый ниже двигатель с внешним подводом теплоты предназначен для утилизации тепловой энергии горячих газов, являющихся отходами различных производств и процессов. Извлеченное тепло двигатель превращает в механическую работу, которая с помощью электрогенератора может быть превращена в электроэнергию. В современном производстве тепловых отходов в виде газов горячих очень много. Это горячие газы, выходящие из металлургических печей, котельных установок разного рода, газы в трубах систем отопления.

Наиболее перспективным применением двигателя является использование его в частных домах в районах с холодным климатом (Север РФ, Сибирь, Аляска, Канадский Север, Скандинавия). В этом случае тепло отходящих газов системы отопления будет использовано для обеспечения дома электроэнергией. Двигатель также может приводить в движение насос для подачи в дом воды из реки.

Рассматриваемый двигатель разработан в Екатеринбурге Конюховым Дмитрием Леонидовичем и не имеет зарубежных аналогов.

В настоящий момент для двигателей с внешним подводом теплоты наиболее известен термодинамический цикл Стирлинга, состоящий из двух изотерм и двух изохор. Но возможно применение и других термодинамических циклов в подобных двигателях.

Рассмотрим идеальный термодинамический цикл с изотермическим сжатием и адиабатическим расширением некого гипотетического двигателя. На рис. 14 приведен такой идеальный термодинамический цикл, показанный в pV- и sT-координатах.

Рис. 14. Идеальный термодинамический цикл

В цикле принят изохорический процесс подвода теплоты так как, его термический КПД больше изобарического. Для упрощения расчетов, изохорический процесс 2–3 показан прямой линией.

Термический КПД цикла по sT-диаграмме рис. 14а:

(1)

Термический КПД цикла по pV-диаграмме рис. 14б:

(2)

где:
P - степень повышения давления;
Q – показатель адиабаты;
T – степень сжатия.

Как видно из формулы (1) термический КПД такого цикла зависит от отношения температур холодильника и нагревателя, а формулы (2) – соответствия между необходимой производимой работой, степенью сжатия и количеством подводимой теплоты.