Смекни!
smekni.com

Физическая основа и виды тепловых двигателей (стр. 9 из 10)

За счет посадок зеленых насаждений возможно снижение загрязненности атмосферного воздуха на прилегающих у магистралям территориях на величину 1,5 – 2 ПДК (Приложение, таблица 4).

Технологическое направление. Весьма реальным мероприятием выглядит программа перевода автомобильного транспорта на экологические виды топлива, в том числе перевод городских автобусов, муниципального и ведомственного грузового транспорта, коммунальных и дорожно-транспортных машин на природный газ. Такую эколого-технологическую задачу в 1996 году поставили перед руководителями автохозяйств столицы Правительство Москвы и РАО «Газпром». Использование экологически более чистого моторного топлива – природного газа – позволит сократить выбросы в атмосферу сажи, высокотоксичных ароматических углеводородов, окиси углерода, окислов азота, что, в конечном счете, положительно скажется на здоровье горожан (социальный эффект) и обеспечит экономические выгоды автотранспортным предприятиям за счет сокращения почти вдвое расходов на оплату топлива (экономический эффект).

Московская фирма «ДИТО» предложила свой метод очистки и обработки дизельного топлива перед заправкой в баки автотранспорта, позволяющий снизить содержание канцерогенных полиароматических углеводородов в отработанных газах в 2,5 – 3,5 раза.

Большое значение для экологизации транспорта имеют режимы движения, а также расходы топлива у двигателей внутреннего сгорания. Минимальный расход топлива происходит при режиме наката и торможения при скоростях движения грузового автомобиля 40 – 60 км/час и легкового автомобиля – 60 – 80 км/час. Продольные уклоны и резкие повороты на дорогах требуют перехода работы двигателя в режим тягового усилия, при котором расход топлива и, соответственно, токсичных выбросов увеличивается почти в 2 раза.

Снижение скорости движения автотранспортного потока (переход от оптимального режима к минимальному) может привести к увеличению расхода топлива и выбросов вредных веществ в 3 – 4 раза. При возникновении на пути движения заторов потребление горючего и, соответственно, выбросы возрастают многократно. В режиме разгона при переключении передачи расход топлива (по сравнению с оптимальным режимом) возрастает: на первой передаче – в 5 – 10 раз; на второй передаче – в 2 – 4 раза; на третьей передаче – в 1,5 – 2 раза (Приложение, таблица 5).

Московский нефтеперерабатывающий завод наладил производство моторного топлива с улучшенными экологическими характеристиками. В бензинах вдвое снижено содержание серы (до 0,05%), ограничены содержание бензола (до 3 – 5%) и плотность. Допущено применение добавок и моющих присадок, что способствует снижению выбросов окиси углерода на 20 – 30% и сокращению расхода топлива на 2 – 4%.

Снижение токсичности автомобильных двигателей может быть достигнуто выполнением целого комплекса технологических мероприятий в стационарных условиях (Приложение, таблица 6).

Следует сказать, что городской транспорт является источником шумового воздействия на окружающую среду. На магистральных улицах с интенсивным движением уровень шума достигает в среднем 81 дБА.

Площадь распространения шумового влияния от городского транспорта зависит от многих факторов, в том числе от состояния дорог, рельсовых путей, подвижного состава, работы двигателя и т.п.

Для выявления зон акустического дискомфорта в городских условиях следует осуществлять экологические исследования и разрабатывать шумовую карту, особенно для городов-мегаполисов. В числе противошумных мероприятий можно рекомендовать возведение экранов в виде стен, гаражей, жилых зданий, многорядных зеленых насаждений.

Медико-экологическая значимость шумового воздействия в городах России диктует необходимость разработки и внедрения акустического мониторинга для контроля уровня шума.

На основании данных акустического мониторинга, возможны оптимизация интенсивности и структуры транспортных потоков, регулирование режима работы промышленных объектов, корректировка генеральных планов города.

Одним из методов снижения влияния шумовой нагрузки на здоровье населения является введение платы из расчета стоимости одного децибела.

7. Практическая часть

Во время подготовки данного реферата мне стало интересно, какое количество вредных веществ выделяется при работе транспорта с карбюраторным и дизельным двигателями.

Для этого я выбрала наиболее удобное время и место для наблюдения: 17.00-17.15 на площади Маяковского.

Я посчитала примерное количество автотранспорта, которое проедет за 15 минут на промежутке 100 м.

Всего получилось 172 машины, из них 24 машины с дизельным двигателем и 148 – с карбюраторным двигателем.

Так как за 15 минут всего проехало 172 машины, то за 1 час – 688 машин (172 машины*4), из них 96 машин с дизельным двигателем и 592 машины с карбюраторным двигателем.

Общий путь, который прошли все машины за 1 час, равен 68800 м (9600 м – с дизельным двигателем; 59200 м – с карбюраторным двигателем)

Далее я посчитала, какое количество топлива сжигается двигателем автомобиля за 1 час:

дизельный двигатель – 3840 л.

карбюраторный двигатель – 5920 л.

Из этого можно сделать вывод, что дизельный двигатель экономичнее. Но остается вопрос, какой же двигатель выделяет меньше вредных веществ? Это мы можем увидеть из таблицы 2, приведенной ниже.

дизельный двигатель карбюраторный двигатель
на 100 м пробега на 9600 м пробега на 100 м пробега на 59200 м пробега
CO 0,015 л 1,44 л 0,06 л 35,52 л
углеводороды 0,0025 л 0,24 л 0,01 л 5,92 л
диоксид азота 0,001 л 0,096 л 0,004 л 2,368 л

таблица 2

Из таблицы мы видим, что транспорт, работающий на дизельных двигателях выбрасывает меньшее количество вредных веществ, по сравнению с транспортом, работающим на карбюраторных двигателях. Следовательно, если дизельные двигатели выгоднее и лучше, т.к. и расход топлива у них значительно меньше, чем у карбюраторных и количество выделяемых вредных веществ меньше, по сравнению с теми же карбюраторными двигателями, хотя и дизельные и карбюраторные двигателя относятся к тепловым двигателям.

8. Заключение.

В данной работе я изучила все, что как-либо связано с тепловыми двигателями. И теперь можно сказать, что тепловые двигатели оказывают очень плохое воздействие на окружающую среду, и, что пришло время придумывать новые виды двигателей и находить новые виды топлива и источников энергии, которые будут более экологически чище и экономически выгоднее тепловых двигателей. Пусть проходит эра тепловых двигателей, пусть у них много недостатков, пусть появляются новые виды двигателей, не загрязняющие окружающую среду, но тепловые двигатели еще долго будут приносить пользу людям, и люди через многие сотни лет будут по доброму отзываться о них, ибо именно они вывели человечество на новый уровень развития, а пройдя его, человечество поднялось еще выше.

9. Приложение.

рисунок 1, примерная схема работы модели Папена

В 1680 году Папен изобрёл паровой котёл. Но, создав котёл, он не сразу нашёл способ его применения, а даже отошёл от использования пара – его поглотила идея создания машины, в которой работали бы атмосферное давление и газ, выделявшийся при сгорании пороха. Эта конструкция и принцип действия показаны на верхнем рисунке. Но этому первому двигателю внутреннего сгорания не суждено было жить – от неё отказался сам изобретатель, убедившись, что полезная работа, совершаемая ею, невелика.

И тогда Папен вернулся к пару. Свою первую паровую машину он построил, используя тот же принцип, только заменил порох на воду. И, казалось бы, изобретатель добился своего – его паровая машина работала. Но представив, сколько возни было бы с ней, а в результате – один рабочий ход в минуту и мощность меньше 1 лс, Папен отказался и от неё.

рисунок 2, примерная схема работы насоса Сэвери

Работа насоса происходила так: пар в насосном резервуаре охлаждался впущенной через кран водой, создавая в нём (в резервуаре) давление ниже атмосферного, из-за чего происходило всасывание воды из шахты; после этого в резервуар подавался пар, который и вытеснял всосанную воду; затем описанный цикл повторялся. Клапаны обеспечивали работу насоса: они не допускали попадания пара в шахту, попаданию воды в резервуар тогда, когда этого не было нужно, не допускали обратный сток воды в шахту.

рисунок 3, примерная схема работы машины Ньюкмена

Принцип действия машины был несложен: давление пара, впускаемого в цилиндр, поднимало поршень вверх. Когда он достигал определённой точки, в цилиндр подавалась холодная вода, из-за чего пар конденсировался, и давление резко падало – поршень начинал двигаться вниз под действием атмосферного давления.

Исходя из описанного принципа действия, машину Ньюкомена правильнее называть пароатмосферной, так как атмосферное давление играет не меньшую, чем пар, роль.

рисунок 4, примерная схема работы машины Ползунова

Схематическая конструкция машины показана на рисунке. У ней было два цилиндра, поршни которого были соединены таким образом, что, когда один из них опускался, то другой в это время поднимался. С помощью механизмов машина работала самостоятельно, требовалось лишь подбрасывать топливо в топку котла. В машине использовалось не только атмосферное давление, но и давление пара. Конструкция Ползунова являлась машиной непрерывного действия. Механик также знал, как можно преобразовать возвратно-поступательное движение её во вращательное, если это потребуется, хотя 90% механизмов завода, на котором стояла машина, требовали именно возвратно-поступательного привода (воздуходувные меха, насосы и пр.). В целом, машина Ползунова являлась первым в мире универсальным тепловым двигателем.