Смекни!
smekni.com

Отрицательное преломление света на границах раздела сред (стр. 7 из 9)

Теория распространения поверхностных волн при учете дифракции волн на краю пленки и добавочных поверхностных волн была развита в работе [53]. Наличие дифракции и превращения поверхностных волн в объемное излучение и, наоборот, объемного излучения в поверхностные волны существенно усложняет проблему нахождения ДГУ для поверхностных волн.

5. Магнитная восприимчивость на оптических частотах

Мы уже обсуждали в разделах 3.1, 3.2 и 3.4 некоторые особенности соответствия между двумя подходами, используемыми в электродинамике сплошных сред. Один из подходов основан на учете пространственной дисперсии: в нем рассматриваются три поля (E,D,B) и система уравнений дополняется материальными уравнениями (9) с диэлектрическим тензором ε(ω,к). В другом (возможно, более привычном), так называемом "симметричном" подходе в явном виде рассматриваются все четыре поля (E,D,B,H) и для монохроматических волн используются материальные уравнения

Использование уравнений (56) вместе с уравнениями Максвелла приводит к обычному дисперсионному уравнению (3) для плоских волн, распространяющихся в пространственно однородной среде.

В этом разделе мы рассмотрим условия, при которых магнитная восприимчивость µ(ω), входящая в уравнение (56), сохраняет свой физический смысл при описании непрерывной среды. Для естественных материалов этот вопрос анализируется в учебнике Ландау и Лифшица [6], где делается следующий вывод: "В отличие от ε(ω) магнитная проницаемость µ(со) при увеличении частоты сравнительно рано теряет свой физический смысл". Что это означает? Хорошо известно, что для перехода к пространственно-усредненным величинам, осуществляемого при макроскопическом описании, требуется, чтобы характеризующие среду микроскопические размеры а (таких размеров может быть несколько) были много меньше, чем длина, на которой изменяются макроскопические электромагнитные поля (т.е., например, длина электромагнитных волн в среде: а < λ). Для естественных материалов а обычно порядка атомного или молекулярного размера, постоянной решетки или длины свободного пробега зарядов.

Во многих из недавних работ, последовавших за работой Пендри [54], макроскопические уравнения Максвелла используются для изучения распространения волн и отрицательного преломления в искусственных периодических или аморфных структурах (метаматериалах). Ссылки на более ранние исследования в рамках того же подхода как периодических, так и аморфных искусственных сред можно найти в [55]. Эти материалы - композиты, составленные из элементов самой разной формы (сфер, линейных проводников и т.д.). Геометрические размеры составляющих материал объектов ("искусственных молекул") и соответствующая постоянная решетки (новый масштаб длины а) могут быть в сотни раз больше, чем в естественных материалах. В качестве примера отметим здесь структуру, составленную из пар золотых наноштырей размером порядка 80-200 нм, изучавшуюся в работе [56] при длине световой волны в вакууме от 400 до 700 нм. Другой пример - недавняя работа [57], в которой использовалась двойная периодическая структура, состоящая из пар параллельных золотых нанопрутьев размером 780 х 220 х 50 нм. Длина волны падающего света варьировалась в области 500-2000 нм. Структуры, изучавшиеся в работах [56, 57], изготовлялись с целью создания метаматериала с отрицательным коэффициентом преломления на оптических частотах. Однако в обоих случаях фактически были созданы лишь "монослои", а не объемные структуры.

Существует два различных способа анализа таких композитов. Поскольку размеры нанообъектов существенно превосходят атомные размеры, каждый из этих объектов можно описывать в рамках обычной макро- скопической теории и характеризовать, например, соответствующими ε(ω) и µ(ω). Тогда задачу о распространении света в композитном материале можно решать, задавая на поверхностях нанообъектов граничные условия Максвелла, с помощью, например, метода конечных разностей численной электродинамики [58]. Очевидно, что при таком мощном и прямолинейном подходе нет необходимости вычислять эффективные материальные характеристики среды, а обычные значения ε(ω) и µ(ω) зависят от точки пространства. Любые ограничения, накладываемые на значение функции µ(ω)в этом подходе, - те же, что и для природных материалов.

Другой, концептуально привлекательный и допускающий аналитическое решение метод состоит в проведении "повторного усреднения" структуры композита и использовании для полученной эффективно-однородной среды макроскопических уравнений Максвелла. Такой метод применим до тех пор, пока λ>> а, т.е. пока среда может описываться соответствующими эффективными проницаемостью и восприимчивостью. Важно, что рассмотрение распространения волн, подобное тому, которое обычно проводится для естественных однородных конденсированных сред с а<<λ, оправдано только в том случае, когда возможно введение постоянных в пространстве эффективных параметров ε, µ. Однако оказывается, что представление об эффективной восприимчивости µ(ω) имеет ограниченную область применимости [6].

5.1Магнитный момент макроскопического тела

Сложность определения физического смысла µ(ω) при высоких частотах в [6], важного как для теории, так и для интерпретации эксперимента, связывается с тем, что может оказаться невозможным "измерение" восприимчивости посредством измерения полного индуцированного магнитного момента макроскопического тела. В самом деле, индуцированная макроскопическая плотность тока J в зависящем от времени поле создается как за счет намагниченности


так и за счет диэлектрической поляризации Р == (D - Е)/4π:

Уравнение (58) может быть получено, с одной стороны, непосредственно из усредненных макроскопических уравнений Максвелла

а с другой стороны, из вычисления тока J = (pv) как средного от микроскопической плотности тока при известных положениях и скоростях заряженных частиц в среде [33, 35].

Индуцированный полный магнитный момент макроскопического тела

также есть сумма двух слагаемых:

где

Таким образом, физический смысл намагниченности М как магнитного момента единицы объема тела связан с возможностью пренебречь в уравнении (60) вкладом (62) зависящей от времени диэлектрической поляризации. Только тогда, когда этим вкладом можно пренебречь, восприимчивость µ(ω) можно считать физической величиной, определяющей магнитный момент единицы объема.

Заметим, что для электрического дипольного момента аналогичной проблемы не существует [6]: полный электрический дипольный момент определяется соотношением, подобным соотношению (61): Ptot = JPdv

Возникает естественный вопрос об условиях, при которых вклад Mtot2 в Mtot действительно мал. Используя уравнения Максвелла (59) и определения М (57) и Р, можно легко вычислить относительные вклады в индуцированный ток (58) для монохроматических плоских волн. Для того чтобы вклад магнитного тока был доминирующим, т.е.

и, следовательно, членом M2tot можно было бы пренебречь, необходимо выполнение неравенства

Таким образом, если для заданных ε(ω) и µ(ω) величина R(ω)>>1, то вкладом Mtot2 можно пренебречь и тогда величина µ(ω), входящая в одно из уравнений (56), будет более или менее точно определять магнитный момент единицы объема, возникающий при распространении в среде плоской электромагнитной волны. Если же неравенство (63) не выполняется, то магнитный момент единицы объема определяется в основном током электрической поляризации, а физический смысл величины магнитной восприимчивости µ(ω), определяющей, в том числе, величину коэффициента преломления волн, оказывается неясным. Теперь мы уже не можем сказать, что величина µ(ω) представляет собой магнитный момент единицы объема, таким образом, правомерность ее использования, а следовательно, и симметричного подхода становится сомнительной. Тем не менее физический смысл величины µ(ω) может быть определен и в этом случае, если возможно ее независимое измерение. Использование плоской волны, на основе которой получено неравенство (63), является не лучшим способом определения величины магнитной восприимчивости µ(ω). Причина заключается в том, что электромагнитная волна создает не самые подходящие условия для уменьшения величины M2tot, поскольку электрическое поле волны относительно сильное. Вместо этого можно, как обсуждается в [6], поместить макроскопическое тело с малым размером в зависящее от времени (монохромотическое) магнитное поле, создаваемое внешним током Jext. Электрическое поле должно быть относительно слабым, и тогда вклад электрической поляризации в магнитный момент единицы объема может быть сделан малым. Для того чтобы решить задачу аналитически, возьмем цилиндрический образец длиной Lи радиусом / и поместим его внутрь соленоида, в котором магнитное поле создается внешним круговым током. При такой геометрии малость образца означает, что