Смекни!
smekni.com

Отрицательное преломление света на границах раздела сред (стр. 8 из 9)


С другой стороны, образец должен быть макроскопическим:

для того чтобы вообще имело смысл вводить эффективную магнитную восприимчивость.

Если выполняется условие (64), то магнитное поле в образце создается в основном внешним током. Обозначим величину этого постоянного поля через Н. Появление поля Н приводит к постоянной намагниченности образца М =(µ(ω) - 1)H/4π, и его вклад (61) в полный магнитный момент выражается в виде

Однако переменное магнитное поле создает в образце также и электрическое поле в соответствии с уравнением Максвелла

В рассматриваемой геометрии величина этого поля является функцией расстояния от оси цилиндра х: Е = |ωµ(ω)(Нх/2с|. Величина плотности тока диэлектрической поляризации, а следовательно, второй вклад (62) в полный магнитный момент имеет вид

Из уравнений (66) и (67) получаем, что, для того чтобы преобладал "магнитный" вклад


должно выполняться неравенство

Используя вместо частоты со соответствующую ей длину плоской волны в среде λ(ω) = 2πс/ω^εµ, можно переписать критерий (68) в виде

При выполнении критерия (68) величина µ(ω) сохраняет свой смысл вне зависимости от выполнения неравенства (63). Этот критерий "слабее" неравенства (63) в силу условия (64). Разумеется, численные коэффициенты в неравенствах (68), (69) зависят от выбора формы образца, а те интервалы частот, в которых условие (64) не выполняется, следует исключить из приведенного выше рассмотрения.

Отметим, что неравенства (63) и (68) естественным образом следуют из сравнения вкладов отклика среды в обобщенную диэлектрическую проницаемость εL(ω,k)-lв уравнении (20): для выполнения этих неравенств необходимо, чтобы вклад члена с пространственной дисперсией ωк2был больше, чем вклад члена без пространственной дисперсии. Для заданной частоты со неравенство (63) соответствует в уравнении (20) волновому вектору к волны в среде, а неравенство (68) - волновому вектору к ~ 1/1, т.е. \/к имеет порядок размера образца.

Для того чтобы легче было удовлетворить неравенству (68), размер образца l должен быть как можно меньшим, но все же таким, чтобы образец оставался макроскопическим телом (см. (65)). Очевидно, что чем меньше микроскопический размер а, тем меньшим может быть размер образца l и тем легче удовлетворить неравенству (69). Наименьшее возможное значение а -порядка атомных или молекулярных размеров - встречается в естественных материалах. Наличие множителя ω2в знаменателе левой части критерия (68) ясно показывает, что при достаточно низких частотах этот критерий выполняется хорошо, поскольку при низких частотах величины ε(ω) и µ(ω) слабо зависят от частоты. С возрастанием частоты удовлетворить критерию (68) становится все труднее.

Конечно, выполнение этого критерия зависит также и от деталей частотной зависимости функций ε(ω) и µ{ω). Используя, например, модельные выражения (4) и (5), запишем левую часть неравенства (68) в виде

Величина (70) имеет "горб" в узкой области вблизи нуля магнитной восприимчивости ωmz, который в действительности будет "размыт" из-за диссипации. Помимо того, величина выражения (70) определяется множителем

где стоящая справа оценка сделана для естественных (состоящих из молекул или атомов) материалов при оптических частотах со ~ coL~ со^ (см. (34)). Очевидно, что для данного макроскопического размера образца (65) неравенство (68) в общем случае не может выполняться для оптических частот. Измерения (или модельные расчеты) полного магнитного момента макроскопического тела в этой области частот не будут определяться магнитным моментом единицы объема М, за исключением, возможно, некоторых частотных интервалов.

Представляется разумным предположить, что та же оценка (71) и тот же вывод справедливы также для метаматериалов, созданных из достаточно маленьких (а <<λ) металлических или иных структур, если электрическая и магнитная резонансные частоты имеют тот же порядок, что и ωр, а величина, эквивалентная Fm/Fe, имеет порядок ωa22. Можно было бы проверить, выполняется ли условие, подобное (68), для структур различной формы, данные о которых опубликованы, и установить область частот, в которой восприимчивость µ(ω) имеет физический смысл при макроскопическом описании образца. Несмотря на то, что характерный размер а в метаматериалах гораздо больше размера атома (составляет несколько десятков или сотен нанометров), очевидно, однако, что область частот, в которой удовлетворительно выполняется набор неравенств

при возрастании а в общем случае будет смещаться в сторону меньших частот. Действительно, может оказаться, что в метаматериалах с большими а неравенства (72) не выполняются для большинства частот, но длина волны к все же заметно превосходит а. Тогда восприимчивость невозможно измерить (и, следовательно, определить ее физический смысл) с помощью описанного выше соленоида. В этой ситуации для оценок остается, по сути, только критерий (63). Нам неизвестна какая-либо лучшая конфигурация для "измерения" восприимчивости.

До тех пор, пока λ>> а, метаматериал, разумеется, можно рассматривать как сплошную среду, а подход, основанный на учете пространственной дисперсии и использующий тензор ε(ω,к), представляет собой разумную альтернативу подходу, использующему ε(ω)и µ(ω) на тех частотах, на которых µ(ω) теряет физиче-ский смысл. Однако из рассуждений, приведенных в разделе 3, следует, что до тех пор, пока учет пространственной дисперсии ограничивается членами ωк2, как, например, в уравнении (22), формально можно описывать поперечные поляритоны в рамках ε(ω)-µ(ω)-подхода, если теперь уже некая эффективная восприимчивость ц(со) задана уравнением (20), из которого следует обычное выражение (3) для коэффициента преломления. Однако из рассуждений, приведенных в этом разделе, ясно, что определенную таким образом восприимчивость µ(ω) в общем случае нельзя связать с полным магнитным моментом макроскопического тела при оптических частотах, так как учитывается только та часть пространственной дисперсии, которая обусловлена магнитными дипольно-разрешенными переходами. Описанный метод, основанный на учете пространственной дисперсии, разумеется, позволяет исследовать другие виды дисперсии и соответствующие качественно новые эффекты (такие как возникновение добавочных волн), которые полностью отсутствовали бы в описании материальных свойств тела в терминах ε(ω) и µ(ω).

Когда любой из структурных размеров а метаматериала становится сопоставимым с длиной волны света в среде к, описание распространения волн в композите в рамках электродинамики сплошных сред становится невозможным, поскольку композит нельзя считать, как уже упоминалось, "эффективной непрерывной" средой, и следует использовать описание с помощью зависящей от координаты функции отклика материала.

Актуален анализ применимости ε(ω)-µ(ω)-подхода к результатам уже опубликованных работ, в которых утверждалось о наблюдении в метаматериалах отрицательного преломления в оптической области. К сожалению, в публикациях не всегда приводятся данные о величинах ε(ω) и µ(ω). В некоторых случаях приводимое авторами этих работ значение мнимой части коэффициента отражения оказывается порядка значения действительной части или даже превосходит его, что исключает возможность серьезного отношения к публикуемым утверждениям. Важно также, чтобы изучаемые экспериментально структуры являлись по-настоящему трехмерными, а не двумерными монослоями: монослои даже искусственных материалов следует учитывать только в граничных условиях для полей. Никакого отношения к отрицательному преломлению в трехмерных материалах эксперименты с "монослоями", вообще говоря, не имеют.

6. Другие интересные эффекты

6.1Генерация гармоник в средах с отрицательной групповой скоростью

Генерация гармоник в среде с отрицательной групповой скоростью имеет ряд особенностей. Здесь, следуя [8], на качественном уровне кратко расскажем об одном из интересных эффектов. Рассмотрим полубесконечную среду, в которой могут распространяться волны с отрицательной групповой скоростью в некотором диапазоне частот. Обычно спектральная ширина ∆ω этого интервала достаточно узка: ∆ω < ω. Пусть лазерный луч с частотой ωнаходящейся внутри интервала ∆ω, падает на среду из вакуума. Тогда частота второй гармоники 2 и частоты более высоких гармоник приходятся на ту область частот, при которых в среде распространяются волны уже с положительной групповой скоростью. Как известно, источники генерации гармоник определяются тензорным произведением нелинейных восприимчивостей х{2){3&bsol; и амплитуд поля в среде. При малых значениях интенсивности поле Е(ω, к) может быть вычислено в линейном приближении без учета нелинейного взаимодействия. Поскольку входящая преломленная волна соответствует частоте, на которой распространяются волны с отрицательной групповой скоростью, ее волновой вектор направлен из объема тела к его поверхности, как показано на рис. 7а. Тогда волновой вектор источника, например, второй гармоники равен 2к и также направлен к границе раздела между телом и вакуумом. С другой стороны, волновой вектор волны с частотой 2ω, уносящей энергию от поверхности в глубь нелинейной среды, должен быть направлен от поверхности в глубь тела. Поэтому волновые векторы источника второй гармоники и этой нормальной прошедшей волны будут рассогласованы по фазе, их взаимодействие будет слабым, и эта волна также будет возбуждаться слабо. Такое рассогласование приведет к тому, что основная часть энергии источника второй гармоники будет передана второй гармонике, распространяющейся в вакууме по


направлению от поверхности, как схематически показано на рис. 7а.