Смекни!
smekni.com

Общая Физика лекции по физике за II семестр СПбГЭТУ ЛЭТИ (стр. 6 из 13)

Рассматривая электроны как одноатомный газ получим:

H = 1/3 nmulCV, где СV = 3/2 (k/m), то H = 1/2 nkul.

Таким образом

H/s = (kmu2)/e2 = 3(k/e)2T = = 2,23*10 ¾ 8*T.

31. Постоянный электрический ток, его плотность и ЭДС:

Если через некоторую поверхность переносится суммарный заряд, отличный от нуля, то говорят, что через эту поверхность течет электрический ток. Ток может течь в тветдых телах (металлы, полупроводники), в жидкостях (электролиты) и газах (называется газовым разрядом).

Для протекания тока необходимо наличие заряженных частиц, которые могут перемещаться в пределах всего тела, называемых носителями тока. Ими могут быть электроны, ионы или макроскопические частицы, несущие на себе избыточный заряд.

Ток возникает при условии, что внутри тела $ эл. поле. Носители заряда принимают участие в молекулярном тепловом движении и движуться с некой v и в отсутствии заряда, но т.к. движение хаотическое, то ток = 0. При появлении поля на хаотическое v накладывается упорядоченное u. Т.о. u = v + u, но т.к. <v> = 0, то <u> = <u>.

Значит эл. ток – упорядоченное движение электрических зарядов.

Эл. ток колличественно характеризует величина, равная величине заряда, переносимого через рассматриваемую поверхность за единицу времени, и называемая силой тока, т.е. поток заряда через поверхность.

I = dq/dt, где dt – время, за которое через поверхность переносится заряд dq.

Перенос “-“ заряда в одном направлении эквивалентен переносу такого же “+” заряда в противоположном направлении. Если через поверхность одновременно переносится «+» и «¾» заряды, то

I = dq+/dt + |dq¾|/dt.

За направление тока принимается направление движения «+» носителей.

Эл. ток может быть распределен по поверхности, по которой он течет неравномерно. Это показывает вектор плотности тока j. Он численно равен отношению {силы тока dI, протекающего через расположенную в данной точке перпендикулярную к направлению движения носителей площадку dS^} и {величины этой площадки}:

j = dI/dS^, за его направление принимается u.

Ток, не изменяющийся по времени, называется постоянным:

I = q/t, где q – заряд, переносимый через рассматриваемую поверхность за конечное время t.

I = [A].

ЭДС:

Если в проводнике создать электрическое поле и не принимать мер к его поддержанию, то очень быстро ток прекратится. Для недопущения этого необходимо осуществлять круговорот зарядов по самкнутому пути. В замкнутой цепи должны иметься участки, на которых перенос положительных зарядов происходит в направлении возрастания j, т.е. против сил эл. поля. Перемещение носителей на этих участках возможно только под действием сторонних сил.

Их можно охарактеризовать работой, которую они совершают над перемещающимися по цепи зарядами. Величина, равная работе сторонних сил над единичным «+» зарядом, называется ЭДС.

e = A/q.

FСТ = E**q, где Е* - напряженность поля сторонних сил.

Величина, равная работе, совершаемой электростатическими и сторонними силами при перемещении единичного «+» заряда, называется падением напряжения (напряжением):

U12 = j1 - j2 + e12.

Участок цепи, на котором не действуют сторонние силы, называется однородным, тогда:

U = j1 - j2.

Участок, на котором на носитель действуют сторонние силы, называется неотнородным.

32. Закон Ома, сопротивление проводников, закон Джоуля – Ленца:

Закон Ома: сила тока, текущего по однородному металлическому проводнику, при отсутствии сторонних сил, пропорциональна падению напряжения U на проводнике.

I = (1/R)*U, т.к. проводник однородный, то U = j1 - j2; R – электрическое сопротивление проводника.

[A] = [Ом]/[B].

Величина сопротивления зависит от формы, размеров и свойств материала проводника. Для однородного цилиндрического проводника:

R = r(l/S), где l – длина проводника, S – площадь поперечного сечения, r - удельное электрическое сопротивление, зависящее от свойств металла.

r = [Ом*м].

В металлах направление векторов Е и j (плотность тока) совпадают. Из этого следует, что

j = (1/r)*E = sE (закон Ома в дифференциальной форме), где s - удельная электрическая проводимость материала.

Закон Джоуля – Ленца:

Когда проводник неподвижен и химических превращений в нем не совершается, работа тока затрачивается на увеличение внутренней энергии проводника, в результате чего проводник нагревается, выделяется тепло:

Q = Uit = /по закону Ома/ = RI2t, закон получил название Джоуля – Ленца.

Если сила тока изменяется со временем, то кол-во теплоты за время t: Q = 0òt RI2dt.

Кол-во тепла в элементарном цилиндрическом объеме:

dQ = RI2dt = ((rdl)/dS)(jdS)2dt = = rj2dVdt, где dV = dS*dl.

Поделив выражение на dV и dt, получим кол-во теплоты, выделевшееся в ед. V за ед. t:

QУД = rj2 – удельная тепловая мощность тока.

33. Закон Ома для для неонородного участка цепи:

На неоднородном участке цепи на носители тока действуют, кроме электрических сил еЕ, сторонние силы еЕ*, способные так же вызывать упорядоченное движение носителей тока. На таких участках:

j = s(E + E*) – закон Ома для неоднородного участка цепи в дифференциальной форме.

Для того, чтобы перейти от дифференциальной формы к интегральной:

Неоднородный участок цепи 1 – 2:

S

1 2

dL

Предположим, что значения j, s, E, E* в каждом сечении, ^ контуру 1–2, одинаковы; векторы j, E и Е* в каждой точке направлены по касательной к контуру.

Спроецировав на элемент контура dl векторы j, E и Е*, получим:

(*) jL = s(EL + EL*), где проекции равуны модулю векторов, взятых со знаком «+» или «¾», в зависимости от направления вектора относительно dL.

Из-за сохранения заряда сила постоянного тока в каждом сечении будет одинаковой, то I = jLS постоянна вдоль контура 1 – 2.

В (*) можно заменить: j = I/S, s = 1/r, то:

I(r/S) = EL + EL*, а по всей длине:

I1ò2(r/S)dL = 1ò2ELdL + 1ò2EL*dL Û

Û IR = j1 - j2 + e12 Û Û I = (j1 - j2 + e12)/R – закон Ома для неоднородного участка цепи.

Если цепь замкнута, т.е. j1 = j2, то: I = e/R, где R – cуммарное сопротивление всей цепи.

34. Разветвление цепи. Правила Кирхгофа:

Узлом называется точка, в которой сходятся более, чем 2 проводника. Токи, текущие к и от одного узла, разноименны.

Первое правило: алгебраическая сумма токов, сходящихся в узле, равна 0:

åIK = 0, что вытекает из закона сохранения заряда (суммарный заряд электрически изолированной системы не может изменяться), то поток вектора j должен быть равен 0.

Второе правило: рассмотрим контур:

() 2


R1 R2

e

1 + + e2

¾

¾