Смекни!
smekni.com

Исследование твердых электролитов (стр. 11 из 14)

В медицине, например, используется и чистый кислород, и воздух с пониженным содержанием кислорода — так называемая "гипоксическая смесь", или "горный воздух". Электрохимические насосы наряду с мембранными оксигенаторами (см. "Наука и жизнь" № 2, 1999 г.) позволят решить массу проблем, особенно в медицинских учреждениях, удалённых от промышленных центров. В атмосфере с пониженным содержанием кислорода значительно дольше хранятся продукты питания, и устройства с кислородными насосами могут стать экономичней привычных холодильников.

На основе твёрдых оксидных электролитов можно создавать разные электрохимические устройства. А. Топливный элемент. Внутрь пробирки подаётся водород H2 или угарный газ CO, во внешнее пространство — воздух. На внутреннем электроде газы окисляются, образуя либо воду, либо углекислый газ. Между электродами возникает разность потенциалов. Б. Электролизер для разложения водяного пара и углекислого газа. На внутреннем электроде под действием приложенного напряжения они восстанавливаются до водорода и окиси углерода:

Н2О + 2е– = Н2 + О2–

СО2 + 2е– = СО + О2–

Освободившиеся ионы кислорода O2– мигрируют сквозь стенку трубки, воссоединяются и выделяются на внешнем электроде в виде кислорода O2. В. Кислородный насос. Кислород воздуха, поступающего в пробирку, на внутреннем электроде превращается в O2–, а на внешнем — выделяется в виде чистого кислорода. Г. Датчик состава газа. Воздух или чистый кислород поступает внутрь пробирки, исследуемый газ — во внешнее пространство. На электродах возникнет разность потенциалов, величина которой определяется составом газа.

Электролизеры. Теперь к внешнему электроду — катоду — подводят водяной пар или углекислый газ. На катоде будет происходить разложение пара или углекислого газа, а на аноде в обоих случаях выделяется кислород. Уникальная способность этого высокотемпературного электролизера одновременно разлагать водяной пар и углекислый газ позволяет создать систему жизнеобеспечения, скажем, на космических объектах.

Теплоэлектрогенераторы. Человек сделал первый шаг к независимости от природы, научившись сохранять огонь, поистине универсальный источник энергии. Костёр давал тепло и свет, на нём готовили пищу, он расходовал ровно столько топлива, сколько было необходимо. Костёр тысячелетиями оставался главной энергетической установкой человека, и неудивительно, что мы испытываем какую-то ностальгию по очагу с горящими дровами.

Ещё в конце прошлого века свет давали свечи и керосиновые лампы, а тепло — печи. Лишь немногим более ста лет назад на человека начало работать электричество, которое могло давать свет, тепло, механическую работу. Одно время казалось, что достаточно подвести к жилищу только электрическую энергию, а уж там преобразовывать её во что угодно. Но сказала своё слово экономика: кпд электростанции менее 40%, потери при передаче и обратном превращении электричества в другие виды энергии тоже значительны. Ясно, что там, где нужно только тепло, его целесообразно получать прямо из топлива. И не случайно сегодня обсуждается простая идея: вернуть "очаг" в дом в виде электрохимического генератора с топливным элементом, преобразующим энергию топлива в электричество и тепло.

Топливные элементы. Пусть к внешним стенкам пробирки подаётся водород, а внутрь её — кислород. Между электродами возникнет напряжение около вольта, по соединяющей их цепи потечёт ток, и на электродах пойдут реакции, обратные тем, что проходят в электролизере. Внешний электрод станет анодом, внутренний — катодом, а устройство превратится в источник тока — твёрдооксидный топливный элемент.

Одно и то же устройство может служить и топливным элементом, и электролизером, позволяя аккумулировать электрическую энергию. В период низкого её потребления невостребованная мощность электростанций используется для получения водорода. В пике потребления электролизер начинает работать как топливный элемент, производя электричество из водорода.

Топливом в элементе может быть и угарный газ. В него нетрудно превратить уголь, нефть, различные газы и спирты (которые, например, в Бразилии используют как горючее для автомобилей). Элемент послужит основой электрохимического генератора, способного существенно изменить концепцию снабжения жилища энергией. Наиболее прост в техническом отношении генератор на природном газе — метане или пропане.

Как показывают исследования, его электрический кпд достигает 70%. Остальные 30% энергии топлива выделяются в виде тепла, которое можно использовать в паровых турбинах. Кпд такой комбинированной установки способно превысить 80% — столь высокой эффективности нет ни у одного генератора.

Восемь лет назад в Институте высокотемпературной электрохимии Уральского отделения РАН был изготовлен демонстрационный генератор на метане мощностью один киловатт. Но до практической реализации дело никак не дойдёт. Опытно-конструкторские работы, которые уже начинались, до конца так и не доведены. Задача очень сложна, её необходимо решать в рамках национальной программы, попытки, разработать которую оказались пока безуспешными.


5.Материалы ионики твердого тела

5.1 Исторические сведенья

Первые упоминания о высокой проводимости ионных кристаллов относятся, по-видимому, к началу XIX в.: в 1833 г. М.Фарадей отметил аномально большую электропроводность сульфида серебра, сравнимую с таковой для металлов. Аналогичный эффект в оксидных материалах был обнаружен В.Нернстом, который использовал керамику на основе оксида циркония, легированного иттрием, в качестве материала для ламп накаливания. Только в начале XX в. ученые доказали, что высокая проводимость таких веществ обусловлена движением не электронов, а разнозаряженных ионов, как это наблюдается в жидких электролитах. Подобные соединения получили название твердых электролитов или суперионных проводников.

5.2 Непоседливые ионы

При нормальных условиях перенос заряда ионами в обычных твердых телах - как кристаллических, так и аморфных - не очень значителен и при комнатной температуре удельная проводимость не превышает 10–10-10–12 Ом–1·см–1. Электропроводность же суперионных проводников составляет величину порядка 10–1 Ом–1·см–1 (при комнатной температуре!). Это значение близко к проводимости расплавов и концентрированных растворов жидких электролитов. Таким образом, речь идет о материалах, сочетающих свойства жидкостей (проводимость, характерную для жидкого расплава или раствора, ионную термоэдс) и твердых тел (механическую жесткость кристаллов).В настоящее время твердые электролиты перестали быть экзотическими объектами исследований благодаря открытию и синтезу нескольких сотен новых соединений с высокой ионной проводимостью. Они незаменимы при создании полностью твердотельных топливных элементов, газовых и жидкостных сенсоров, миниатюрных аккумуляторов (все знают о литиевых батарейках, но не все задумываются, из чего они сделаны). Для эффективного поиска таких веществ потребовались новые теоретические подходы к изучению явлений аномально быстрого ионного переноса в конденсированных средах и развитие специальных современных экспериментальных методик. Этим обусловлено возникновение нового раздела науки - ионики твердого тела, находящейся на пересечении физики и химии твердого тела, электроники и электрохимии, кристаллографии и неорганической химии, материаловедения и энергетики.Существование суперионной проводимости во многом зависит от структурных особенностей материала: чтобы ионы могли перемещаться, энергетически близких кристаллографических позиций для размещения потенциально подвижных ионов в элементарной ячейке должно быть больше, чем самих ионов; энергия разупорядочения ионов по позициям в кристаллической решетке и энергия, затрачиваемая на движение, должны быть малыми (~kT, где, как обычно, k - постоянная Больцмана, T - температура). Энергетические барьеры между соседними позициями должны быть небольшими (в сравнении с kT), что при наличии в кристаллической решетке вакантных мест приведет к статистическому распределению мобильных ионов по разрешенным позициям; в кристаллической структуре "сетка каналов" для движения ионов должна быть сквозной, в противном случае быстрое движение заряженных частиц будет возможным лишь в пределах одной или нескольких элементарных ячеек.Перечисленным требованиям удовлетворяют лишь особые кристаллы, в структуре которых для атомов одного или нескольких сортов отсутствует дальний порядок в их пространственном расположении, хотя для остальных частиц дальний порядок сохраняется. Такие соединения рассматриваются как кристаллы с собственным структурным разупорядочением.


Рис.1. Подвижные положительные ионы серебра, как аквалангисты, легко перемещаются в пространстве между рифами - атомами иода (сферы) - в кристалле AgI.

Хорошим примером служит структура модельного кристалла AgI (рис.1). Кристаллический каркас "держат" анионы иода, а два катиона серебра могут размещаться по 12 тетраэдрическим позициям элементарной ячейки. Именно для такой ажурной структуры, в которой нарушен дальний порядок для атомов одного типа, было введено наглядное (может быть, не совсем удачное) понятие "квазирасплавленная подрешетка", и считалось, что жесткая анионная подрешетка находится в "катионном расплаве".

Подвижные частицы относительно свободно перемещаются по всему объему кристалла, за исключением той его части, которая занята ионами неподвижного остова. Поэтому здесь более разумно говорить не об "ионном расплаве", а о существовании в матрице кристалла "проводящего пространства". Такое качественное рассмотрение находит подтверждение в полиэдрическом представлении одной из подрешеток кристалла (см., например, рис.2).