Смекни!
smekni.com

Исследование твердых электролитов (стр. 5 из 14)

Как известно, золь-гель технология позволяет получать большое число различных оксидных материалов [53, 54]. В этом случае алкоксиды металлов и неметаллов (общая формула M(OR), где М — Si, Al, Ti, V, Cr, Mo, W, Zr и т.д.; R — алкильная группа, в частности СНз, C2H5, С3Н7; n — степень окисления элемента М) подвергаются гидролизу и поликонденсации в растворе при комнатной температуре. Алкоксиды многих элементов являются жидкостями (к примеру, тетраэтоксиксилан Si(OC2H5)4), растворяются в спирте и других органических растворителях. При добавлении воды в спиртовой раствор алкоксида происходит его гидролиз. Это приводит к образованию гидроксилированных М—ОН-групп:

M(OR)n + Н20 - [M(OR)n-1(OH)] + ROH

и мономеров гидроксидов, которые выступают в качестве активных центров в реакции поликонденсации, протекающей, по всей видимости, по механизму алкоксилирования:

М—ОН + М—ОХ - " М—О—М + ХОН (X - Н либо R).

Реакции гидролиза и поликонденсации алкоксидов, как правило, протекают одновременно, что и приводит к формированию димеров и затем более сложных структур. Трехмерная сетка геля строится из очень мелких частиц размером 3-4 им (частицы золя), формируемых из димеров и их ассоциатов [60]. Структура и состав продукта зависят в большей мере от природы атома М и условий протекания процесса (регулирование соотношения Н20 к М—СЖ в реакционной системе и величины рН) [60-62].

Следует заметить, что "золь-гель химия" алкоксидов переходных металлов более сложна, так как атомы переходных металлов имеют не только высокую электрофильность, но и проявляют несколько координационных состояний [63]. Гели могут быть получены также из неорганических солей, но водная химия их осложнена процессами комплексообразования и гидролиза [57]. Сравнение двух вариантов золь-гель технологии показывает, что алкоголят-ный метод обеспечивает более высокую однородность состава материалов на всех стадиях процесса, вплоть до получения конечного продукта. Смешение идет на молекулярном уровне, что чрезвычайно важно при получении смешанных оксидов или других соединений, содержащих два или более металла либо металлы и неметаллы. Этот факт особенно важен при синтезе ТЭЛ на основе гетеровапентных твердых растворов. Синтез же аналогичных материалов другим методом (технология "физического геля" из неорганических солей) становится более сложной задачей, так как для получения золей смешанных оксидов в каждом случае требуется разработка специальных методик. К тому же объединение золей разного состава часто приводит к гетерокоагуляции и другим эффектам, затрудняющим процесс гелирования.

При образовании геля первичные частицы формируют пространственную сетку, в которой иммобилизована жидкая фаза. Механизм гелеобразования достаточно сложный. В ряде работ с позиции фрактальной геометрии обсуждается возможность реализации процесса кластер — кластер диффузионноограниченной агрегации [53, 64].

Гели склонны к упорядочению уже в процессе их старения (рис. 11.2.2). При старении наблюдается продолжение процесса поликонденсации (пока сохраняются группы М—ОН), проявляется синерезис, вызывающий самопроизвольную усадку гель-сфер, выделяется часть жидкости из пор и наступает огрубление пространственной сетки геля за счет процессов растворения и переосаждения вещества, составляющих первичные частицы разных размеров [53]. Результаты старения проявляются существенно на стадии сушки гель-сфер — очень важной операции золь-гель технологии. Сушка сопровождается значительной усадкой, повышением плотности упаковки первичных частиц и понижением удельной поверхности материала. В производстве керамики по золь-гель технологии используются специальные химические агенты, контролирующие высушивание [65]. К ним можно отнести, например, формамид (NH2СНО) и щавелевую кислоту (Н2С2О4). В первом случае получают крупнопористый ксерогель, во втором — мелкопористый.

2.2.4 Синтез дисперсных твердых электролитов

Увеличение проводимости ионной соли Lil в результате гетерогенного легирования оксидом алюминия наблюдалось впервые в 1973 г. Лиангом [73]. Это обстоятельство инициировало интенсивные исследования в ионике новых композиционных ТЭЛ и развитие методов их синтеза.

Наиболее распространенным методом синтеза композитов является керамическая технология: компоненты тщательно перемешивают и прогревают смесь при достаточно высокой температуре (как правило, выше температуры плавления ионной соли) в условиях, при которых не происходят, разложение ионной соли и рекристаллизация дисперсной добавки. Этим методом были созданы композиты Lil—А1203 [73-75], AgCl—Al2O3 [76, 77], AgI— А120з [78], CuCl—А12Оз [79], KCl—А1203 [80], AgBr—А120з [81], LiBrxH20—А1203 [82], Т1С1-А1203 [83], CaF2—А12Оз [84], SrCI2—AI2O3 [85].Данный метод получил широкое распространение при синтезе и других композитов: Li2S04—А1203 (СеОг, Yb203, У203,Zn202, BaTiOs), RbNO3—А1203, NaCl—AL2O3, KCl—А1203, RbCI—AL2O3, CsCl—А1203 [86], PbCl2— А120з [87]. В ряде работ композиты получали методом осаждения ионной соли на поверхности гетерогенной добавки. Гетерогенный компонент помешали в раствор ионной соли, а затем проводили испарение растворителя. Этот метод применяли для синтеза композитов на основе кристаллогидратов галогенидов лития [80-90]. В работах Дадни [91, 92] композиты создавали пропиткой пористой мембраны, изготовленной из А1203, расплавом хлорида серебра. Подобный метод был использован при синтезе композитов на основе цеолитов [93]. Адаме с сотрудниками [94] получали композиты методом кристаллизации ионной соли из стеклообразной матрицы. При синтезе композитов на основе нитратов щелочных металлов Li(Na,K,Rb,Cs)N03—А1203 применялась механическая обработка смеси исходных веществ в высоконапряженных планетарных мельницах с ускорением шаров 60-90 g [86]. В этом случае были созданы наиболее высокопроводящие композиционные ТЭЛ. Методом ИК-спектроскопии было показано, что при использовании в данном случае механической обработки в мельницах нитраты не разлагались.

Представляет интерес синтез нанокомпозитов LiX—А1203 (X = F-, Сl, Вr, I, Р043, SO42) методом разложения прекурсоров — двойных солей общей формулы LinX-2nAl(OH)*3mH20. Соли были синтезированы из водных растворов по методике, описанной в работах [95, 96]. Композиты образуются при термическом разложении указанных солей при 400.°С в течение 2 ч. Дегидратация соли описывается уравнением LinX-2nAl(OH)*3mH20 -LinX + nА1203 + mH20 и приводит к образованию двухфазного композита, содержащего при X = F-, Сl, Вr и I 50 мол.% А12Оз, при X = S042~ 33,3 мол.% А1203 и при X = Р043 25 мол.% А120з.

Нагаи и Нишино [97, 98] использовали технику электрохимического осаждения соответствующих ТЭЛ в пористых матрицах А120з при синтезе композитов AgI—AgCl—AI2O3. Указанные галогениды серебра осаждались из растворов в микропорах мембраны из А1203. Использование встречной диффузии реагентов AgNO2, с одной стороны, и Nal — с другой. (для синтеза композита Agi—А120з), либо смеси NaCl и Nal (для синтеза композита Agi— AgCl—А1203) позволяет регулировать микроструктуру ТЭЛ в порах. На рис. II 2.3 показан возможный механизм образования осадков ТЭЛ на основе хлорида и иодида серебра в порах AI2O3. Анализ полученного композиционного ТЭЛ показал, что AgC! кристаллизуется в структурном типе поваренной соли, а иодид серебра — в модификации. Композит AgCl— Agi—А1203 имеет более высокие значения ионной проводимости по сравнению с соответствующими величинами для AgCl—А1203 и Agi—А1203 Метод соосаждения с использованием компонент ZrOCI28H20, YCI3 и А1С13 применялся при получении композитов из стабилизированной двуокиси циркония и оксида алюминия [99,100]

2.3 Выращивание монокристаллов суперионных проводников

Выбор методов выращивания монокристаллов СИП зависит от физических и химических характеристик кристаллизуемого вещества. Оптимальные условия получения кристаллов определяются, исходя из фазового состава исходного вещества и его вида (порошок, слиток и т.п.), типа кристаллшапионной атмосферы, вида контейнера, скорости выращивания, характера начальных стадий кристаллизации (спонтанное зарождение или кристаллизация на затравку) и многих других параметров. Методы кристаллизации можно условно разделить на несколько основных групп [1,2]:

выращивание кристаллов в твердой фазе, из растворов, в том числе и раствор-расплавные методики, из растворов и расплавов при повышенных давлениях, из расплавов, из газовой фазы.

Ниже будут рассмотрены основные методы получения монокристаллов, используемые три выращивании суперионных материалов [3].

2.3.1 Выращивание кристаллов в твердой фазе

Для получения новых материалов часто используется метод твердофазных реакций [4]. При отжиге веществ после завершения процесса синтеза происходят процессы рекристаллизации, при которых в материале образуются новые зерна со способными к перемещениям границами. После продолжительной выдержки при температурах несколько ниже точки плавления часть кристаллитов существенно увеличивается в размерах. Описанным выше способом были получены, например, монокристаллы типа NASICON (Na1+xZr2P3-xSixO12 2<x<2.4): отжиг при 1245.°С в течение 4 месяцев приводил к росту кристаллитов размером до 100-300 мкм [5].

2.3.2 Выращивание кристаллов из растворов

Кристаллизация из растворов позволяет получать кристаллы соединения, химический состав которого может отличаться от химического состава исходной жидкой фазы. В зависимости от температуры процесса и химической природы растворителя различают кристаллизацию из низкотемпературных растворов и рост из солевых расплавов (раствор-расгшавные методы). Сразу отметим, что при росте из раствора процессы идут при температурах, значительно меньших температуры плавления, поэтому получаемые кристаллы менее дефектны, чем выращенные из расплава.