Смекни!
smekni.com

Исследование твердых электролитов (стр. 7 из 14)

2.3.5 Гидротермальный синтез

Одним из путей повышения растворимости исходных компонентов служит повышение температуры раствора. Гидротермальная кристаллизация — это рост кристаллов из водных растворов при температурах выше 100°С и давлениях выше атмосферного. Существенной особенностью гидротермального выращивания кристаллов является применение минерализатора (или растворителя), вводимого в систему А—Н20 для увеличения растворимости труднорастворимого компонента А., Таким образом, за счет высоких температур, давлений и введения минерализатора можно перевести в растворенное состояние кристаллизуемое вещество, обеспечить необходимое пресыщение раствора и провести кристаллизацию исследуемого соединения.

К недостаткам метода следует отнести трудность, а зачастую и невозможность прямого наблюдения процессов, происходящих в закрытых автоклавах. Экспериментатор вынужден точно прогнозировать опыт и реконструировать процесс роста путем исследования продуктов реакции в охлажденном состоянии и при отсутствии давления.

Требованиям гидротермального способа удовлетворяют автоклавы, изготовленные из специальных сталей, с внутренними вкладышами из платины, тефлона или других шелоче - (кислото) - стойких материалов.

2.З.6 Выращивание из расплавов

Кристаллизацию из расплавов можно рассматривать как рост кристаллов растворителя, при котором растворенный компонент, например примесь, остается в растворе, а чистый растворитель выкристаллизовывается. Из расплава можно выращивать кристаллы только таких веществ, которые не только плавятся без разложения, но и выдерживают перегрев.

Различают методы выращивания кристаллов в тиглях и без использования тиглей. Преимуществом первых по сравнению со вторыми является большая простота технологии. Кроме того, такие способы дают возможность получать кристаллы относительно сложной грмы (в том числе профилированные). К недостаткам тигельных методов надо отнести пличные виды взаимодействия расплава с тиглем, что сказывается на качестве кристаллов Тигельные методы разбиваются на группы с неподвижным тиглем и с перемещением тигля или печей.


3. Твёрдые полимерные электролиты:структура, свойства и применение

3.1 Введение

Электролиты вообще и твёрдые полимерные электролиты в частности нельзя рассматривать отдельно от электрохимической системы, компонентом которой является электролит. Поэтому начнём с определения некоторых основных электрохимических понятий.

Электрохимию можно определить как часть химии, изучающую превращения веществ на границе раздела проводник электричества первого рода (электронный проводник) — проводник электричества второго рода (ионный проводник), происходящие с участием свободных электронов. Система, состоящая из двух проводников первого рода и находящегося с ними в контакте проводника второго рода, в которой могут протекать как минимум одна электрохимическая реакция окисления и одна электрохимическая реакция восстановления вещества, называется электрохимической системой. Составные части электрохимической системы имеют следующие названия. Электронный проводник, находящийся в контакте с ионным проводником, называется электродом. Электрод, на котором идёт электрохимическая реакция восстановления, называется катодом; электрод, на котором идёт электрохимическая реакция окисления, — анодом. Ионопроводящую среду в электрохимической системе называют электролитом. Вещество, участвующее в окислительно-восстановительных реакциях на электродах, называется электроактивным веществом (ЭАВ).

3.2 Твердый электролит

Чаще всего понятие "электролит" относят к жидким растворам и расплавам веществ, хотя давно известны многие твёрдые вещества, обладающие ионной проводимостью. Твёрдыми полимерными электролитами (ТПЭ) называют вещества, имеющие полимерное строение, причём в состав полимеров входят функциональные группы, способные к диссоциации с образованием катионов или анионов, направленное движение которых, внутри структуры полимера обусловливает его ионную проводимость. В качестве примера приведены формулы двух наиболее широко известных представителей ТПЭ.

"Nafion" (x = 5–113; y = 1000; m = 0–33; n = 2–66)

"Nafion" представляет собой фторуглеродный полимер, содержащий функциональные сульфогруппы, способные к обмену с внешней средой электростатически связанными катионами К. Ионная проводимость этого ТПЭ обусловлена движением катионов, поэтому подобные электролиты получили название катионных или (по аналогии с ионообменными смолами) катионообменных.

Поли (винилпридин)

Второй ТПЭ — поли (винилпиридин) — состоит из углеводородных полимерных цепей, имеющих функциональные пиридиновые группы, способные электростатически или координационное связывать анионы А. Электропроводность данного электролита обусловлена движением анионов, поэтому его относят к группе анионных или анионообменных. Из-за уникальных качеств (устойчивость, высокая электропроводность, прочность) широкое распространение получили только фторуглеродные катионные ТПЭ, поэтому в дальнейшем свойства и применение полимерных электролитов будем рассматривать на их примере.

В 1964 году американская фирма "Дюпон" ("Du Pont") запатентовала способ получения фторуглеродных виниловых эфиров, содержащих сульфогруппы, полимеризацией которых в водной среде с использованием пероксида водорода в качестве инициатора и были получены первые полимерные мембраны, широко известные под торговой маркой "Nafion". Позднее аналогичные ТПЭ стали выпускаться и в России под названием МФ-4СК. Первые в мире промышленные установки с применением мембран "Nafion" запущены в Японии в 1975–1976 годах. В 70-е годы были начаты широкие научные исследования свойств этих полимерных электролитов, главным образом механизма их проводимости.

3.3 Свойства ТПЭ "Nafion"

Внешне мембрана "Nafion" представляет собой оптически прозрачные в видимой части спектра листы толщиной от 0,1 до 1 мм. Вследствие инертности своей фторуглеродной основы этот ТПЭ чрезвычайно устойчив к химическим воздействиям (выдерживает кипячение в концентрированной азотной кислоте), механически прочен и термически устойчив (до 100°С). Обычно он выпускается в протонированной или натриевой форме (K = H + или Na + соответственно). Эквивалентная масса "Nafion" составляет от 900 до 1200 г в расчёте на эквивалент сульфогрупп.


Рис. 1. Внутренняя структура ТПЭ "Nafion"

Исследования внутреннего строения ТПЭ "Nafion" показали, что он имеет двухфазную структуру (рис. 1). Основа полимера (гидрофобная фаза) состоит из фторуглеродных и эфирных цепей, расположенных в пространстве таким образом, что функциональные сульфогруппы группируются внутри сферических полостей диаметром порядка 40 Å. Система связанных узкими каналами полостей, содержащих гидратированные катионы, представляет собой вторую, гидрофильную фазу мембраны.

Перенос заряда в ТПЭ осуществляется в простейшем случае за счёт перехода катионов с одной сульфогруппы на другую. Специальными исследованиями было установлено, что небольшие по размеру катионы могут легко переходить из одной полости в другую, тогда как движение анионов через узкие каналы затруднено из-за отталкивания от одноимённо заряженных функциональных групп. Это свойство определяет возможность использования "Nafion" как ион-селективных мембран, способных пропускать одни ионы и задерживать другие.

Главной особенностью "Nafion" является её чрезвычайно высокая ионная проводимость. Величину проводимости ТПЭ или, другими словами, скорость транспорта заряда через них принято оценивать через коэффициент диффузии заряженных частиц (коэффициент диффузии заряда) D (см 2/c). Коэффициент диффузии ионов Na + в мембране "Nafion" составляет около 1·10 –6 см 2/c, что сравнимо с коэффициентом диффузии этих ионов в концентрированном водном растворе хлорида натрия.

Рассматриваемые полимеры, подобно ионообменным смолам, способны обменивать входящие в их состав катионы на катионы внешней среды. Методом ионного обмена в ТПЭ можно внедрять как простые, так и достаточно крупные комплексные катионы типа [Ru(bipy)3] 2+ , где bipy = 2,2'-бипиридин. При этом концентрация катионов в мембране может превышать предельно возможную концентрацию данных катионов в растворе. Так, после выдерживания мембраны в водном растворе, содержащем 10 –3 моля [Ru(bipy)3] 2+ на литр, концентрация этих ионов в ТПЭ может быть в 500–700 раз больше. Причём внедрённые комплексные катионы прочно удерживаются мембраной: уменьшения концентрации комплекса не было обнаружено даже после промывки мембраны в проточной воде в течение нескольких дней.

Полимеры с эквивалентной массой 900–1000 г/экв могут медленно растворяться в этаноле или диметилформамиде. Это свойство является весьма важным, поскольку даёт возможность получать на поверхности электродов различных электрохимических систем тонкие плёнки ТПЭ путём нанесения раствора и выпаривания растворителя при небольшом нагревании. Такие электроды с тонким слоем ТПЭ на поверхности и введённым в полимер для придания электроду каких-либо специфических свойств ЭАВ называют полимерными электродами. Они, в свою очередь, относятся к классу химически модифицированных электродов (ХМЭ). Химически модифицированными называют электроды, на поверхность которых нанесены молекулярно организованные химические системы, предназначенные для целенаправленного изменения электрохимических, каталитических или оптических свойств электрода.