Мир Знаний

Анализ погрешностей спутниковой радионавигационной системы работающей в дифференциальном режиме (стр. 14 из 21)

Точность местоопределения после ввода дифференциальных поправок определяется остаточными погрешностями, обусловленными изменчивостью квазисистематических ошибок синхронизации, эфемеридного обеспечения и ошибок за счет ионосферы, а также ошибками, обусловленными шумами и помехами, многолучевостью за счет приема отраженных окружающими объектами сигналов и воздействием тропосферы. Остаточная погрешность местоопределения составляет единицы метров на больших расстояниях разноса и менее одного метра на малых.

В отличие от автономного метода, дифференциальный метод позволяет устранить постоянные составляющие ошибок. Также целый ряд относительно медленно меняющихся случайных составляющих ошибок.

Ошибки часов спутника и эфимеридная ошибка полностью компенсируются дифференциальным режимом, пока приемник пользователя и опорная станция используют данные одних и тех же спутников. Эфемеридные ошибки, если они достаточно велики (30 м и больше) точно так же компенсируются дифференциальным режимом. Для пользователей, находящихся вблизи опорной станции, пути соответствующих сигналов от спутников достаточно близки, так что компенсация является почти полной. Когда удаление пользователь - опорная станция возрастает и различные пути прохождения сигналов от спутников через ионосферу и тропосферу будут отличаться достаточно сильно, атмосферные неоднородности могут вызывать до некоторой степени различные задержки. Так как их протяженность различна, они вызывают ошибку в дифференциальных измерениях GPS, называемую пространственной декорреляцией. Эта ошибка становится больше при увеличении расстояния пользователь-станция, т.е. при нескольких сотнях километров.

Таким образом, в дифференциальном режиме остаются шумовые погрешности, погрешности из-за внешних источников шума, погрешности из-за переотражений, частично ионосферная ошибка и тропосферная ошибка. Эти погрешности, за исключением ионосферной составляющей, будут примерно равными как для P кода, так и для C/A кода.

4.3 Выводы

В автономном режиме с использованием C/A кода остаются ионосферные задержки, тропосферные задержки, эфимеридная ошибка, ошибки частотно-временной синхронизации, ошибки от внутренних и внешних шумов и ошибки из-за многолучевости.

При оценочных расчетах, ошибка в таком режиме составляет 70-100 метров. Метод временного усреднения позволяет исключить тропосферные ошибки что приводит к существенному улучшению точности до единиц метров.

В автономном режиме с использованием P кода устраняются ошибки: эфимеридная, частотно-временная и ионосферная. Таким образом, оценочная точность повышается до 20-30 сантиметров.

В дифференциальном режиме устраняются ионосферные задержки, ошибки часов спутника, эфимеридная ошибка. Таким образом, оценочная точность при использовании фазовой коррекции в этом методе становится равна 20-30 сантиметров. При этом, при использовании временного усреднения, можно исключить непостоянную составляющую ионосферной ошибки и тропосферную ошибку, что приводит к снижению уровня ошибки до 10-15 сантиметров.

5. Экспериментальная оценка точности координат GPS приемника

5.1 Подготовка экспериментов

Оценка точности производилась в три этапа.

Первый этап проводился с целью выяснения эффективности временного усреднения. Для этого использовался комплект аппаратуры Z12 (SCA-12) состоящий из одного приемника.

Второй этап проводился с целью выяснения использования дифференциального режима и дифференциального режима с фазовым уточнением. Для этого использовался комплект аппаратуры Z12 (sca-12) состоящий из двух приемников.

Третий этап проводился с целью выяснения влияния затенения и переотражения навигационных сигналов городской застройкой. Для этого использовался комплект аппаратуры Z12 (SCA-12) состоящий из двух приемников.

5.2 Аппаратура

Работа дифференциального режима АП оценивалась с помощью комплекта аппаратуры, состоящей из двух приемников сигналов СРНС «Навстар» Z12. Первый приемник выступал в роли базовой (корректирующей) станции, формирующей дифференциальные поправки. Вторым приемником производились измерения координат с учетом дифференциальных поправок, передаваемых по радиоканалу с базовой станции.

Приемник Z12 имел следующие технические характеристики.

1. Приемник Z12 фирмы Ashtech (сертифицирован и разрешен к применению в РФ) является 36 канальным Р-кодовым приемником (12 параллельных каналов по С/А-коду, частота L1; 12 параллельных каналов по Р-коду, частота L1; 12 параллельных каналов по Р-коду, частота L2) сигналов системы GPS "Навстар" с двухбитным аналого-цифровым преобразованием сигнала.

2. В приемнике используется специальная Z-технология для подавления зашумления Р-кода (Anti-Spoofing - A/S).

3. Точность измерения линий в режиме СТАТИКА, БЫСТРАЯ СТАТИКА, КИНЕМАТИКА, ПСЕВДОКИНЕМАТИКА составляет 5мм+1мм/км.

4. Определение координат выполняется в реальном времени, без последующей обработки, с точностью не хуже 3 cм.

5. Время измерений составляет 0,5 секунды на одно независимое измерение.

6. Дальность в дифференциальном режиме достигает значений 50 км в зависимости от используемого радиооборудования.

7. Время старта составляет не более 2 минут (от включения до начала съемки) и не более 30 секунд с текущими эфемеридами.

8. Сбор данных осуществляется во внутреннюю память приемника.

9. Программное обеспечение приемника обеспечивает сверхбыстрые определения координат.

Радиоканал для передачи дифференциальных поправок был организован на радиомодемах RF96 c мощностью излучения 20 Вт на частоте 412 МГц.

5.3 Измерения в автономном режиме

5.3.1 Общие сведения об эксперименте

Погрешности измерений подразделяют на грубые погрешности и промахи, систематические и случайные погрешности. Грубые погрешности и промахи появляются или в результате просчета наблюдателя при проведении опыта, или при проведении расчета, или в связи с резким изменением условий эксперимента и т. п. Исключение грубых погрешностей и промахов осуществляется путем повторения опыта и расчета. Поэтому можно полагать, что при многократных повторениях эксперимента эти погрешности исключаются.

Систематическими погрешностями называются погрешности, которые остаются неизменными или изменяющимися закономерным образом при повторении измерения значения величины.

Систематические погрешности чаще всего связаны с методикой измерений или обусловлены инструментальной погрешностью средств измерений. В первом случае обнаружить систематическую погрешность можно, применив различные методики измерений. Во втором – поставив ряд опытов в одной и той же точке с заранее известным эталоном. В результате измерений эталона можно найти поправку к показаниям прибора и устранить тем самым инструментальную погрешность. Таким образом все систематические погрешности вполне устранимы.

Случайными называются погрешности, изменяющиеся случайным образом при повторении эксперимента. Случайные погрешности, вообще говоря, неустранимы. Однако многократным повторением измерений значение измеряемой величины может быть получено сколь угодно близким к ее точному значению.

При постановке эксперимента необходимо принять во внимание случайный характер результатов измерения. В связи с этим возникает вопрос о числе измерений, достаточном для получения надежных данных о свойствах объекта. Если результатом должны быть числовые характеристики изучаемого объекта или процесса, то число измерений может быть достаточно малым, порядка нескольких десятков. Если результатом должны быть сведения о статистических свойствах объекта исследования, то число измерений имеет порядок величины

или даже большее. Для того чтобы выявить статистические характеристики необходимо разбить весь диапазон изменения наблюдаемой величины х на интервалы
, которые также называются разрядами. Оптимальное число разрядов к зависит от числа измерений nи ориентировочно его можно определить по формуле:

(3.1)

Положение разрядов выбирают так, чтобы среднее из наблюдаемых значений величины лежало близко к середине соответствующего разряда.

Очевидно, все измеренные значения

можно распределить по разрядам. Каждый из разрядов будет характеризоваться значением
, принятым для данного разряда. В результате можно построить таблицу распределения

В первом столбце таблицы записаны значения

, принятые для данного разряда, а во втором – число измерений
(частота попадания величины х в область j – разряда). Графически таблицу распределения можно представить в виде гистограммы.