Смекни!
smekni.com

Автоматизированный привод станка-качалки на ОАО "Татнефть" (стр. 5 из 14)


где Емакс – максимальное напряжение источника постоянного напряжения, В. В данном случае это напряжение в звене постоянного тока с учетом возможного превышения напряжения сети на 10%.

(2.6)

fк – несущая частота, так называемая коммутации ШИМ.

В электроприводе типа АТО несущая частота меняется программно. В данном случае fк=8 кГц. Предельная частота ограничена допустимой частотой переключения тиристоров, она составляет 10 кГц. Численное значение индуктивности фильтра определится:

(2.7)

К установке принимает реактор типа РТСТ – 20,5-2,02У3, параметры которого приведены в таблице 2.5

Таблица 2.5 Техническая характеристика реактора РТСТ – 20,5-2,02У3

Наименование Размерность Значение
Номинальное линейное напряжение питающей сети, Uсном В 410
Номинальный фазный ток, I1ном А 20,5
Номинальная индуктивность фазы, Lр мГн 2,02
Активное сопротивление обмотки, Rp мОм 265

Емкость фильтра определится по формуле:

(2.8)

где Тк – период несущей частоты, с;

(2.9)

kr – коэффициент высших гармоник; kr=0,05;

Численное значение емкости фильтра:

(2.10)

К установке принимается конденсатор типа МБГО–1-400В–2,4мкФ±10%. Дроссели включают в каждую фазу, последовательно с асинхронным двигателем, а конденсаторы соединяют в треугольник и включают параллельно двигателю. Соответственно конденсаторы существенно не влияют на общее сопротивление статорной цепи, поэтому сопротивлением фильтра при расчетах можно пренебречь.

2.4 Расчет и выбор элементов сглаживающего фильтра

Сглаживающие дроссели устанавливаются в звене постоянного тока низковольтных агрегатов и служат для снижения переменной составляющей тока через конденсаторы фильтра и уменьшения зоны прерывистых токов при работе электропривода. Конденсатор предназначен для замыкания реактивной составляющей тока статора.

Качество фильтра определяется коэффициентом сглаживания, который определяется:

(2.11)

где qвх – коэффициент пульсаций на входе фильтра;

qвых коэффициент пульсаций на выходе фильтра принимается в пределах 0,01…0,1; выберем qвых=0,01.

Коэффициент пульсаций на входе фильтра определяется по формуле:

(2.12)

где n – число пульсаций выпрямителя; для трехфазной мостовой схемы n=6;

a - угол управления вентилей выпрямителя; =0, так как напряжение регулируется в АИН.

(2.13)

Численное значение коэффициента сглаживания:

Емкость фильтра принимается из расчета 100 мкФ на 1 кВт мощности двигателя. Расчетная мощность фильтра определится:

(2.14)

К установке выбирается конденсатор типа МБГО–1-400 В–390мкФ±10%.

Индуктивность фильтра определяется по формуле:


(2.15)

(2.16)

К установке принимает реактор типа ФРОС–250/0,5У3 параметры, которого представлены в таблице 2.6.

Таблица 2.6 Техническая характеристика реактора ФРОС– 250/0,5У3

Наименование Размерность Значение
Номинальный постоянный ток, I1ном А 320
Номинальная индуктивность фазы, Lр мГн 4,2
Активное сопротивление обмотки, Rp мОм 11,5

Разработка структурной схемы силовой части.

Силовая часть электропривода состоит из преобразователя частоты и электродвигателя. Структурная схема силовой части представлена на рисунке 2.1

Рис. 2.1 Структурная схема силовой части электропривода

Динамические свойства преобразователя частоты совместно с блоками измерения и преобразования координат могут быть упрощенно учтены апериодическим звеном с передаточной функцией:

(2.17)

где KПЧ эквивалентный передаточный коэффициент преобразователя.

(2.18)

где Udмакс номинальное фазное напряжение на выходе преобразователя, В; Uупр макс максимальное напряжение системы управления, В.

Численное значение коэффициента передачи преобразователя частоты:

ТТЧ эквивалентная постоянная времени преобразователя, с. Она складывается из времени задержки включения ШИМ и времени, затрачиваемого процессором на преобразование и вычисление сигналов (Тпр=1 мс).

Время задержки ШИМ определится:

(2.19)

Численное значение постоянной времени преобразователя:

(2.20)

Электродвигатель представляется передаточными функциями электромагнитной и механической частей, представленных апериодическим и интегрирующим звеньями, соединенными последовательно.

Электромагнитная часть представляет из себя передаточную функцию от напряжения статора к току статора:


(2.21)

где Rсуммарное сопротивление двигателя определяется по формуле:

(2.22)

здесь Rф2 активное сопротивление выходного фильтра на выходе АИН, Ом;

R1 активное сопротивление обмотки статора, Ом;

R2 приведенное активное сопротивление обмотки ротора, Ом;

k2 коэффициент электромагнитной связи ротора.

Взаимная индуктивность асинхронного двигателя определится:

(2.23)

Индуктивность рассеяния статора:

(2.24)

Полная индуктивность фазы статора:

(2.25)

Индуктивность рассеяния ротора:

(2.26)

Полная индуктивность фазы ротора:

(2.27)

Индуктивность рассеяния асинхронного двигателя:

(2.28)

или по приближенной формуле

(2.29)

В дальнейших расчетах L 0,0071 Гн.

Коэффициент электромагнитной связи ротора определяется по формуле:

(2.30)

Численное значение суммарного сопротивления двигателя определится:

Электромагнитная постоянная времени асинхронного двигателя определяется по формуле:


(2.31)

Электромагнитный момент двигателя формируется на основании уравнения:

(2.32)

где рп число пар полюсов обмотки статора, рп=2.

Механическая часть асинхронного двигателя представляется интегрирующим звеном с передаточной функцией:

Структурная схема силовой части системы ПЧ –АД смоделирована в программе Simulink. Вид модели представлен на рисунке 2.2.

Рис. 2.2 Структурная схема электропривода в числовом виде

Рис. 2.3 Схема исследования по задающему воздействию


Момент статической нагрузки Мс=26,7 Н·м соответствует номинальному моменту двигателя, который определятся:

(2.33)

Рис. 2.4Переходная характеристика по задающему воздействию

Переходная характеристика характеризует силовую часть электропривода как апериодическое звено с коэффициентом усиления K=21,9.Время переходного процесса в системе равно tпп.зад=0,415 с.