Смекни!
smekni.com

Развитие понятия "Пространство" и неевклидова геометрия (стр. 13 из 15)

т. е.

.

Отсюда на основании (3.21) следует, что

. (3.22)

Повторяя приведенные рассуждения для другой пары

и
ортогональных векторов, получим

. (3.23)

Найдем теперь скалярное произведение векторов

и
. С одной стороны, имеем

,

Где

Следовательно, на основании (3.22, 3.23) имеем

Поэтому

.

С другой стороны,

.

Применяя затем (3.21), (3.22), (3.23), получим


(3.25)

Сравнивая (3.24) и (3.25), заключаем

Или

. (3.26)

Формула (3.26) не зависит от нашего предположения о точках пересечения А1и В1. Эта формула выражает теорему косинусов сферического треугольника сферы чисто мнимого радиуса: косинус гиперболической стороны сферического треугольника равен произведению косинусов гиперболических двух других сторон без произведения синусов гиперболических этих же сторон на косинус угла между ними.

б) Переходим теперь к выводу теоремы синусов. Вычислим для этого квадрат отношения

. На основании (3.26), имеем

. (*)

Видим, что числитель правой части является симметричным выражением относительно переменных а, b, с. Нетрудно убедиться, что такой же симметричностью относительно этих переменных обладает и знаменатель. В самом деле

(3.27)

Таким образом, квадрат искомого отношения симметричен относительно сторон а, b, с. Это означает, что заменяя обозначения сторон а, b, с и углов А, В, С в круговом порядке в (*) получим отношения

,
, равные
. Извлекая из этих отношений квадратные корни, получим формулы

, (3.28)

выражающую теорему синусов сферического треугольника в геометрии сферы чисто мнимого радиуса: синусы гиперболических сторон сферического треугольника относятся как синусы противолежащих углов.

в) Заметим, что формулы (3.26) и (3.28) геометрии сферы чисто мнимого радиуса r= kiв псевдоевклидовом пространстве можно получить из соответствующих формул сферического треугольника в евклидовом пространстве, заменяя

на
,
на
,
на
.

Применяя это правило, получим вторую теорему косинусов для сферического треугольника в случае сферы мнимого радиуса:


(3.29)

Иначе, косинус угла сферического треугольника равен произведению синусов двух других углов на косинус гиперболической стороны между этими углами без произведения косинусов двух других углов.

Отсюда следует, что если углы одного сферического треугольника равны соответствующим углам другого сферического треугольника, то такие треугольники равны.

Формулы прямоугольного треугольника

Предположим, угол С треугольника AВС является прямым. Применяя теорему косинусов (3.26), получим

. (3.30)

Это равенство выражает теорему Пифагора в геометрии Лобачевского: косинус гиперболической гипотенузы прямоугольного треугольника равняется произведению косинусов гиперболических катетов. Применяя формулу (3.28) будем иметь:

, (3.31)

. (3.32)

Полученные формулы можно выписать по мнемоническому правилу, аналогичному правилу Непера в сферической геометрии.

В этих формулах связываются пять элементов прямоугольного треугольника, которые можно рассматривать в циклическом порядке

. Для каждого элемента предшествующий и последующий элементы называются прилежащими, а остальные два элемента - противолежащими элементами. Мнемоническое правило формулируется следующим образом.

Косинус элемента прямоугольного треугольника в геометрии Лобачевского равняется произведению синусов противолежащих элементов или произведению котангенсов прилежащих элементов.

Если под знаком функции входит угол, то функция понимается в тригонометрическом смысле. Если же входит длина, то она делится на радиус кривизны и их функция понимается в гиперболическом смысле. Наконец, в случае, когда под знаком функции стоит катет, функция меняется на смежную: синус — на косинус, тангенс — на котангенс и наоборот.

Пользуясь приведенным правилом, получим для каждого элемента соответствующие выражения через прилежащие и противолежащие элементы прямоугольного треугольника:

(3.33)

Основная формула Лобачевского

Пусть дана на плоскости Лобачевского прямая aи точка A, не инцидентная ей. Опустим из точки А перпендикуляр АВ на прямую а (рис. 19). Проведем также через точку А прямую АО, параллельную прямой а в каком-нибудь направлении. Угол

, как указывали выше, называется углом параллельности, а ответствующим отрезку АВ. Для получения основной формул Лобачевского, связывающей угол параллельности ВАО = П(p) с отрезком p=АВ, возьмем на луче ВО какую-нибудь точку С. Для прямоугольного треугольника AВС, имеем

Будем удалять теперь точку С по лучу до бесконечности, стремится при этом к 1 и в пределе, получим

Отсюда следует, что

Вставляя в последнее равенство

окончательно получим


Эта формула, связывающая угол параллельности П(р) с соответствующим отрезком р, называется основной формулой Лобачевского. Из нее следует, что угол параллельности является монотонно убывающей функцией. Если отрезок параллельности р стремится к нулю, то угол параллельности стремится к прямому углу, если же р стремится к бесконечности, то угол П(р) стремиться к нулю.

Геометрия сферы пространства Лобачевского

Возьмем в трехмерном пространстве Лобачевского сферу радиуса R с центром в некоторой точке О. На этой сфере индуцируется некоторая сферическая геометрия. Получающаяся совокупность предложений называется геометрией сферы в пространстве Лобачевского. Рассмотрим в этой геометрии прямоугольный треугольник AВС, образованный из дуг АВ = с, АС = b, ВС = aбольших кругов. Дуги больших кругов здесь, как и в сферической геометрии обычного пространства являются кратчайшими для достаточно близких точек на сфере. Углы между большими кругами понимаются как линейные углы двугранных углов, образованных плоскостями больших кругов. Предположим, что угол С данного треугольника прямой. Опустим далее из точки В перпендикуляры ВА1и ВС1на радиусы ОА и ОС соответственно. Применяя известные формулы к прямоугольному треугольнику ОВС1(рис. 20), получим