Смекни!
smekni.com

Развитие понятия "Пространство" и неевклидова геометрия (стр. 8 из 15)

Отсюда следует, что

(1.9)

Из (1.1) вытекает также, что

Последние два равенства дают

Или


(1.10)

Доказанные формулы прямоугольного треугольника можно выписать, пользуясь так называемым правилом Непера. Чтобы сформулировать это правило, условимся располагать элементы прямоугольного треугольника а, В, с, А, b в указанном на циклическом порядке.

Для каждого из этих элементов предшествующий и последующий элементы называются прилежащими, а остальные два элемента — противолежащими. Для катета b, например, элементы a, Абудут прилежащими, а элементы с, В — противолежащими. Прилежащими элементами для гипотенузы являются углы A и В, а противолежащими — катеты а и b.

Сформулируем теперь правило Непера. Косинус любого элемента сферического прямоугольного треугольника равняется произведению синусов противолежащих элементов или произведению котангенсов прилежащих элементов. Если под знаком функции стоит катет, то тригонометрическая функция меняется на смежную - синус а косинус, тангенс на котангенс и наоборот. Заметим также, что во всех формулах длины катетов и гипотенузы делятся на радиус сферы R.

Формулы косоугольного треугольника в сферической геометрии

Получим сначала теорему косинусов. Пусть АВС произвольный сферический треугольник. Опустим из вершины В высоту ВD. Применяя к треугольнику ВDСтеорему Пифагора, получим

,

где d=AD, a=BC, b=BC, AB=c.

Перепишем предыдущее равенство, преобразуя второй множитель о формуле косинуса разности:

.(1.11)

Первый и третий множители в первом члене правой части по теореме Пифагора дают

. Упростим второй член в правой части. Так как

,

то заменяя

по формуле (1.9) на
, получим

Таким образом, из (1.11) следует, что

(1.12)

Эта зависимость, выражающая сторону сферического треугольника через две другие стороны в косинус противолежащего угла, называется теоремой косинусов.

Докажем теперь теорему синусов. Из прямоугольного треугольника АВDи ВDС (рис. 6) получаем


Отсюда следует, что

Если опустить теперь высоту из вершины А, то будем иметь

Следовательно

(1.13)

Эти зависимости сторон и синусов противолежащих углов составляют теорему синусов сферического треугольника АВС.

Вторая теорема косинусов

Предположим, что сферический треугольник А1В1С1, является полярным к данному треугольнику АВС. Применяя к нему теорему косинусов, получим

Но в силу формул (см. Полярные треугольники), имеем


Заменяя в предыдущем равенстве стороны и углы только что выписанными выражениями, получим

Или

(*)

Формула и составляет содержание 2-й теоремы косинусов: Косинус угла сферического треугольника равен произведению косинусов двух других углов, взятому с обратным знаком, и сложенному с произведением синусов тех же углов на косинус приведенной противоположной стороны. Аналогичные две формулы можно получить круговой заменой линейных и угловых элементов данного треугольника АВС.

Из второй теоремы косинусов следует, что в сферической геометрии не существует неравных треугольников с соответственно равными углами. Другими словами, если углы, одного сферического треугольника равны соответствующим углам другого сферического треугольника, то такие треугольники равны.

В заключение установим лишь совпадение формул сферической геометрии для фигур с малыми линейными размерами с соответствующими формулами евклидовой геометрии.

О сферической геометрии в малом

Пусть линейные размеры а, b, с сферического треугольника малы по сравнению с радиусом сферы R. Очевидно, эти условия можно осуществить за счет малости указанных линейных размеров или за счет выбора достаточно большого значения R. Из формулы, выражающей теорему косинусов, следует

Учитывая в этом равенстве члены до второго порядка малости включительно, получим теорему косинусов евклидовой геометрии:

(1.14)

В случае прямоугольного сферического треугольника с углом имеем cosA=0 и формула (1.12) в пределе приводит к соотношению

,

составляющему теорему Пифагора в геометрии Евклида. Это равенство следует также из (1.14) при

.

Так как при малых размерах приведенных сторон их синусы в первом приближении пропорциональны аргументам, то из (1.13) следуют две связи

,

выражающие теорему синусов в евклидовой геометрии.

Следовательно, формулы сферической геометрии для фигур с малыми линейными размерами по сравнению с радиусом сферы совпадают с соответствующими формулами евклидовой геометрии. Аналогичный результат получим ниже при рассмотрении формул геометрии Лобачевского.


2.2 Эллиптическая геометрия на плоскости

Были показаны простейшие факты сферической геометрии, в которой всякие две прямые пересекаются в двух диаметрально противоположных точках. Для того, чтобы освободиться от указанного недостатка и прийти к новой геометрии, в которой прямые имели бы не более одной общей точки, условимся считать всякую пару диаметрально противоположных точек сферы за одну точку. Полученную новую поверхность после такого отождествления пар точек сферы будем называть эллиптической плоскостью и обозначать символом S2.

Ясно, что получим ту же плоскость, если будем строить фактормножество множества векторов евклидова пространства отношению эквивалентности в которой

тогда и только тогда, когда векторы
и
непропорциональны.

Прямые эллиптической плоскости получаются из больших кругов в результате указанного отождествления пар точек и будут по-прежнему замкнутыми линиями. Но построенная плоскость S2 стала принципиально новым объектом математического исследования.

Оставаясь замкнутой поверхностью, она утратила свойство двухсторонности. Эллиптическая плоскость является односторонней поверхностью, то есть, раскрашивая какую-нибудь одну сторону этой поверхности, раскрасим ее с обеих сторон. В эллиптической геометрии отсутствует понятие точки, лежащей между двумя другими, если они инцидентны прямой, так как две точки на прямой определяют два взаимно дополнительных отрезка. В этой геометрии можно установить понятие разделения двух пар точек А, В и М, N, инцидентных прямой. Пара A, Bразделяет пару М, N, если точки М, N лежат в разных отрезках, определенных на данной прямой точками А и В. Можно убедиться, что пара точек A, В разделяет пару М, N тогда и только тогда, когда двойное отношение


(АВМN) = АМ/ВМ:АN/ВN

четырех точек А, В, М, N отрицательно.

Разумеется, эллиптическую плоскость можно представить себе также в виде полусферы, у которой диаметрально противоположные точки экватора считаются за одну точку. Объекты новой модели находятся в определенных сопоставлениях с объектами известной модели на сфере. Благодаря этому без обращения к аксиомам выводим, что эти две модели реализуют одну и ту же геометрию.

Проектирование из центра О евклидова пространства на плоскость, касательную к сфере в точке С, где ОС

, переводит прямые эллиптической плоскости в прямые евклидовой плоскости

. Если к точкам касательной плоскости присоединить несобственные точки, то построенное центральное проектирование будет взаимно однозначным отображением всех точек эллиптической плоскости на все точки расширенной евклидовой (проективной) плоскости. Не будем выписывать систему аксиом эллиптической геометрии и заметим лишь, что ее можно получить из аксиом проективной геометрии и аксиом конгруентности.