Смекни!
smekni.com

Распределенные алгоритмы (стр. 46 из 85)

Теорема 6.20 Фазовый алгоритм (Алгоритм 6.7) является волновым алгоритмом.

Доказательство. Т.к. каждый процесс посылает не более D сообщений по каждому каналу, алгоритм завершается за конечное число шагов. Пусть ¡ - заключительная конфигурация вычисления C алгоритма, и предположим, что в C существует, по крайней мере, один инициатор (их может быть больше).

Чтобы продемонстрировать, что в ¡ каждый процесс принял решение, покажем сначала, что каждый процесс хотя бы один раз послал сообщения. Т.к. в ¡ по каналам не передается ни одно сообщение, для каждого канала qp Recp[q] = Sentpq. Также, т.к. каждый процесс посылает сообщения, как только получит сообщение сам, Recp[q] > 0 Þ Sentp > 0. Из предположения, что существует хотя бы один инициатор p0, для которого Sentp0 > 0, следует, что Sentp > 0 для каждого p.

Впоследствии будет показано, что каждый процесс принял решение. Пусть p - процесс с минимальным значением переменной Sent в ¡, т.е. для всех q Sentq ³ Sentp в ¡. В частности, это выполняется, если q - сосед по входу p, и из Recp[q] = Sentq следует, что minq Recp[q] ³ Sentp. Но отсюда следует, что Sentp = D; иначе p послал бы дополнительные сообщения, когда он получил последнее сообщение. Следовательно, Sentp = D для всех p, и Recp[q] = D для всех qp, откуда действительно следует, что каждый процесс принял решение.

Остается показать, что каждому решению предшествует событие в каждом процессе. Если P = p0, p1, ..., pl (l £ D) - маршрут в сети, тогда, по Лемме 6.19,

для 0 £ i < l и, по алгоритму,

для 0 £ i < l - 1. Следовательно, . Т.к. диаметр сети равен D, для любых q и p существует маршрут q = p0, p1, ..., pl = p длины не более D. Таким образом, для любого q существует l £ D и сосед по входу r процесса p, такие, что ; на основании алгоритма, предшествует dp.

Алгоритм пересылает D сообщений через каждый канал, что приводит в сложности сообщений, равной |E|*D. Однако нужно заметить, что |E| обозначает количество направленных каналов. Если алгоритм используется для неориентированной сети, каждый канал считается за два направленных канала, и сложность сообщений равна 2|E|*D.

var recp : 0..N - 1 init 0 ;

(* Количество полученных сообщений *)

Sentp : 0..1 init 0 ;

(* Количество сообщений, посланных каждому соседу *)

begin if p - инициатор then

begin forall r Î Neighpdo send <tok> to r ;

Sentp := Sentp + 1

end ;

while Recp < # Neighp do

begin receive <tok> ;

Recp := Recp + 1 ;

if Sentp = 0 then

begin forall r Î Neighpdo send <tok> to r ;

Sentp := Sentp + 1

end

end ;

decide

end

Алгоритм 6.8 Фазовый алгоритм для клики.

Фазовый алгоритм для клики. Если сеть имеет топологию клика, ее диаметр равен 1; в этом случае от каждого соседа должно быть получено ровно одно сообщение, и для каждого процесса достаточно посчитать общее количество полученных сообщений вместо того, чтобы считать сообщения от каждого соседа по входу отдельно; см. Алгоритм 6.8. Сложность сообщений в этом случае равна N(N-1) и алгоритм использует только O(log N) бит оперативной памяти.

6.2.6 Алгоритм Финна

Алгоритм Финна [Fin79] - еще один волновой алгоритм, который можно использовать в ориентированных сетях произвольной топологии. Он не требует того, чтобы диаметр сети был известен заранее, но подразумевает наличие уникальных идентификаторов процессов. В сообщениях передаются множества идентификаторов процессов, что приводит к довольно высокой битовой сложности алгоритма.

Процесс p содержит два множества идентификаторов процессов, Incp и NIncp. Неформально говоря, Incp - это множество процессов q таких, что событие в q предшествует последнему произошедшему событию в p, а NIncp - множество процессов q таких, что для всех соседей r процесса q событие в r предшествует последнему произошедшему событию в p. Эта зависимость поддерживается следующим образом. Изначально Incp = {p}, а NIncp = Æ. Каждый раз, когда одно из множеств пополняется, процесс p посылает сообщение, включая в него Incp и NIncp. Когда p получает сообщение, включающее множества Inc и NInc, полученные идентификаторы включаются в версии этих множеств в процессе p. Когда p получит сообщения от всех соседей по входу, p включается в NIncp. Когда два множества становятся равны, p принимает решение; см. Алгоритм 6.9. Из неформального смысла двух множеств следует, что для каждого процесса q такого, что событие в q предшествует dp, выполняется следующее: для каждого соседа r процесса q событие в r также предшествует dp, откуда следует зависимость алгоритма.

В доказательстве корректности демонстрируется, что это выполняется для каждого p, и что из равенства двух множеств следует, что решению предшествует событие в каждом процессе.

Теорема 6.21 Алгоритм Финна (Алгоритм 6.9) является волновым алгоритмом.

Доказательство. Заметим, что два множества, поддерживаемые каждым процессом, могут только расширяться. Т.к. размер двух множеств в сумме составляет не менее 1 в первом сообщении, посылаемом по каждому каналу, и не более 2N в последнем сообщении, то общее количество сообщений ограничено 2N*|E|.

Пусть C - вычисление, в котором существует хотя бы один инициатор, и пусть ¡ - заключительная конфигурация. Можно показать, как в доказательстве Теоремы 6.20, что если процесс p отправил сообщения хотя бы один раз (каждому соседу), а q - сосед p по выходу, то q тоже отправил сообщения хотя бы один раз. Отсюда следует, что каждый процесс переслал хотя бы одно сообщение (через каждый канал).

var Incp : set of processes init {p} ;

NIncp : set of processes init Æ ;

recp[q] : boolean for q Î Inp init false ;

(* признак того, получил ли p сообщение от q *)

begin if p - инициатор then

forall r Î Outpdo send <sets, Incp, NIncp> to r ;

while Incp ¹ NIncpdo

begin receive <sets, Inc, NInc> from q0 ;

Incp := Incp È Inc ; NIncp := NIncp È NInc ;

recp[q0] := true ;

if "q Î Inp : recp[q] then NIncp := NIncp È {p} ;

if Incp или NIncp изменились then

forall r Î Outpdo send <sets, Incp, NIncp> to r

end ;

decide

end

Алгоритм 6.9 Алгоритм Финна.

Сейчас мы покажем, что в ¡ каждый процесс принял решение. Во-первых, если существует ребро pq, то Incp Í Incq в ¡. Действительно, после последнего изменения Incp процесс p посылает сообщение <sets, Incp, NIncp>, и после его получения в q выполняется Incq := Incq È Incp. Из сильной связности сети следует, что Incp = Incq для всех p и q. Т.к. выполняется p Î Incp и каждое множество Inc содержит только идентификаторы процессов, для каждого p Incp = P.

Во-вторых, подобным же образом может быть показано, что NIncp = Nincq для любых p и q. Т.к. каждый процесс отправил хотя бы одно сообщение по каждому каналу, для каждого процесса p выполняется: " q Î Inp : recp[q], и следовательно, для каждого p выполняется: p Î NIncp. Множества NInc содержат только идентификаторы процессов, откуда следует, что NIncp = P для каждого p. Из Incp = P и NIncp = P следует, что Incp = NIncp, следовательно, каждый процесс p в ¡ принял решение.

Теперь нужно показать, что решению dp в процессе p предшествуют события в каждом процессе. Для события e в процессе p обозначим через Inc(e) (или, соответственно, NInc(e)) значение Incp (NIncp) сразу после выполнения e (сравните с доказательством Теоремы 6.12). Следующие два утверждения формализуют неформальные описания множеств в начале этого раздела.

Утверждение 6.22 Если существует событие e Î Cq : e p f, то q Î Inc(f).

Доказательство. Как в доказательстве Теоремы 6.12, можно показать, что e p f Þ Inc(e) Í Inc(f), а при e Î Cq Þ q Î Inc(e), что и требовалось доказать.

Утверждение 6.23 Если q Î NInc(f), тогда для всех r Î Inqсуществует событие e Î Cr : e p f.

Доказательство. Пусть aq - внутреннее событие q, в котором впервые в q выполняется присваивание NIncq := NIncq È {q}. Событие aq - единственное событие с q Î NInc(aq), которому не предшествует никакое другое событие a¢, удовлетворяющее условию q Î NInc(a¢); таким образом, q Î NInc(f) Þ aqp f.

Из алгоритма следует, что для любого r Î Inq существует событие e Î Cr, предшествующее aq. Отсюда следует результат.

Процесс p принимает решение только когда Incp = NIncp; можно записать, что Inc(dp) = NInc(dp). В этом случае

(1) p Î Inc(dp) ; и

(2) из q Î Inc(dp) следует, что q Î NInc(dp), откуда следует, что Inq Í Inc(dp).

Из сильной связности сети следует требуемый результат: Inc(dp) = P.

6.3 Алгоритмы обхода

В этом разделе будет представлен особый класс волновых алгоритмов, а именно, волновые алгоритмы, в которых все события волны совершенно упорядочены каузальным отношением, и в котором последнее событие происходит в том же процессе, где и первое.

Определение 6.24 Алгоритмом обхода называется алгоритм, обладающий следующими тремя свойствами.

(1) В каждом вычислении один инициатор, который начинает выполнение алгоритма, посылая ровно одно сообщение.