Смекни!
smekni.com

Распределенные алгоритмы (стр. 7 из 85)

Транспортный уровень (4). Цель транспортного уровня состоит в том, чтобы маскировать ненадежность, представленную сетевым уровнем, то есть, обеспечивать надежную связь между любыми двумя узлами. Проблема была бы подобна той решенной канальным уровнем, но это еще усложнено возможностью дублирования и переупорядочения сообщений. Это делает невозможным использовать циклические числа последовательности, если ограничение на срок службы пакета не гарантируется сетевым уровнем.

Алгоритмы, используемые для управления передачи в транспортном уровне используют подобные методы для алгоритмов в канальном уровне: числа последовательности, обратная связь через подтверждения, и перепередачи.

Уровень сеанса (5). Цель уровня сеанса состоит в том, чтобы обеспечить средства для поддержания подключений между процессами в различных узлах. Подключение может быть открыто и закрыто и между открытием, и закрытием подключение может использоваться для обмена данных, используя адрес сеанса скорее, чем повторение адреса удаленного процесса с каждым сообщением. Уровень сеанса использует надежную непрерывную связь, предлагаемую транспортным уровнем, но структурирует передаваемые сообщения в сеансы. Сеанс может использоваться для передачи файла или удаленного входа в систему. Уровень сеанса может обеспечивать механизмы для восстановления, если узел терпит крах в течение сеанса и для взаимного исключения, если критические операции не могут выполняться на обоих концах одновременно.

Уровень представления (6). Цель уровня представления состоит в том, чтобы выполнить преобразование данных, где представление информации в одном узле отличается от представления в другом узле или не подходящее для передачи. Ниже этого уровня (то есть, при интерфейсе 5/6) данные находятся в передавабельной и стандартизированной форме, в то время как выше этого уровня (то есть, при интерфейсе 6/7) данные находятся в пользовательско - или компьютерно - специфической форме. Уровень выполняет сжатие данных и декомпрессию, чтобы уменьшить количество данных, переданных через более низкие уровни. Уровень выполняет шифрование данных и расшифровку, чтобы гарантировать конфиденциальность и целостность в присутствии злонамеренных сторон, которые стремятся получать или разрушать переданные данные.

Уровень прикладной программы (7). Цель уровня прикладной программы состоит в том, чтобы выполнять конкретные требования пользователя типа передачи файла, электронной почты, информационных табло, или виртуальных терминалов. Широкое разнообразие возможных прикладных программ делает невозможным стандартизировать полные функциональные возможности этого уровня, но для некоторых из прикладных программ, перечисленных здесь, стандарты были предложены.

1.2.3 OSI Модель в локальных сетях: IEEE Стандарты

На проект ссылочной модели OSI влияют в большой степени архитектуры существующих глобальных сетей. Технология, используемая в локальных сетях налагает различные программные требования, и из-за этих требований некоторые из уровней могут почти совсем отсутствовать в локальных сетях. Если сетевая организация полагается на общую шину, общедоступную всеми узлам (см. Подраздел 1.1.4), то сетевой уровень почти пуст, потому что каждая пара узлов связана непосредственно через шину. Проект транспортного уровня очень упрощен ограниченным количеством недетерминизма представленного шиной, по сравнению с промежуточной двухточечной сетью. Напротив, канальный уровень усложнен фактом, что к той же самой физической среде обращается потенциально большое количество узлов. В ответе на эти проблемы IEEE одобрил дополнительные стандарты, покрывая только более низкие уровни OSI иерархии, для использования в локальных сетях (или, если быть более точным, во всех сетях, которые являются структурированными шиной скорее, чем двухточечными соединениями). Потому что никакой одиночный стандарт не мог бы быть достаточно общий, чтобы охватить все сети уже широко использующиеся, IEEE одобрил три различных, несовместимых стандарта, а именно МНОЖЕСТВЕННЫЙ ДОСТУП С ОПРОСОМ НЕСУЩЕЙ И РАЗРЕШЕНИЕМ КОНФЛИКТОВ, маркерную шину , и эстафетное кольцо. Канальный уровень заменен двумя подуровнями, а именно управление доступом к среде и подуровни управления логическим соединением.

Физический (1) уровень. Цель физического уровня в стандартах IEEE подобна таковому первоначального стандарта МЕЖДУНАРОДНОЙ ОРГАНИЗАЦИИ ПО СТАНДАРТИЗАЦИИ, а именно передавать последовательности битов. Фактические стандартные описания (тип монтажа и т.д.), однако, радикально различны, вследствие того, что вся связь происходит через общедоступную среду, а не через двухточечные подключения.

Medium-access-control подуровень (2a). Цель этого подуровня состоит в том, чтобы решить конфликты, которые возникают между узлами, которые хотят использовать общедоступную среду связи. Статичный подход раз и навсегда планировал бы интервалы времени, в течение которых каждому узлу позволяют использовать среду. Этот метод теряет много пропускной способности, однако, если только несколько узлов имеют данные, чтобы передавать, и все другие узлы тихи, среда остается в простое в течение времен, планируемых для тихих узлов. В шинах маркера и эстафетных кольцах доступ к среде находится по карусельному принципу: узлы циркулируют привилегию, названную маркером, среди них, и узлу, задерживающему этот маркер, позволяют использовать среду. Если узел, задерживающий маркер, не имеет никаких данных, чтобы передать, он передает маркер к следующему узлу. В эстафетном кольце циклический порядок, в котором узлы получают их право хода, определен физической топологией подключения (который, действительно, кольцо), в то время как в шине маркера, циклический порядок определен динамически основываясь на порядке адресов узлов. В стандарте МНОЖЕСТВЕННОГО ДОСТУПА С ОПРОСОМ НЕСУЩЕЙ И РАЗРЕШЕНИЕМ КОНФЛИКТОВ узлы наблюдают, когда среда неактивна, и если так, то им позволяют послать. Если два или больше узла запускают посылку (приблизительно) одновременно, имеется проверка на пересечение, которое обнаруживается, что заставляет каждый узел прерывать передачу и пытаться снова в более позднее время.

Logical-link-control подуровень (2b). Цель этого уровня сравнима с целью канального уровня в OSI модели, а именно: управлять обменом данными между узлами. Уровень обеспечивает управление ошибками и управление потоком данных, используя методы, подобные тем использованных в OSI протоколах, а именно числа последовательности и подтверждения. Видящийся с точки зрения более высоких уровней, logical-link-control подуровень появляется подобно сетевому уровню OSI модели. Действительно, связь между любой парой узлов происходит без того, чтобы использовать промежуточные узлы, и может быть обработана непосредственно logical-link-control подуровнем. Отдельный сетевой уровень не следовало бы выполнять в локальных сетях; вместо этого, транспортный уровень сформирован непосредственно на верхней части logical-link-control подуровня.

1.2.4 Поддержка Языка

Реализация одного из программных уровней сети связей или распределенной прикладной программы требует, чтобы распределенный алгоритм, используемый в том уровне или прикладной программе был кодирован на языке программирования. На фактическое кодирование конечно высоко влияет язык и особенно примитивы, которые он предлагает. Так как в этой книге мы концентрируемся на алгоритмах и не на их кодировании как программа, наша базисная модель процессов основана на состояниях процесса и переходах состояния (см. Подраздел 2.1.2), а не на выполнении команд, принимаемых из предписанного набора. Конечно, неизбежно, чтобы там, где мы представили алгоритмы, требовалась некоторая формальная запись; запись программирования, используемая в этой книге обеспечена в Приложении A. В этом подразделе мы описываем некоторые из конструкций, которые можно наблюдать в фактических языках программирования, разработанных для распределенных систем. Мы ограничиваемся здесь кратким описанием этих конструкций; Для большего количества деталей и примеров фактических языков, которые используют различные конструкции, см., например, Bal [Bal90]. Язык для программирования распределенных прикладных программ, должен обеспечить средства, чтобы выразить параллелизм, обрабатывать взаимодействие, и недетерминизм. Параллелизм, конечно, требуется для программирования различных узлов системы таким способом, которым узлы выполнят их часть программы одновременно. Связь между узлами должна также быть поддержана в соответствии с языком программирования. Недетерминизм необходим, потому что узел должен иногда быть способен получить сообщение от различных узлов, или быть способным либо посылать, либо получать сообщение.

Параллелизм. Наиболее соответствующая степень параллелизма в распределенной прикладной программе зависит от отношения(коэффициента) между стоимостью связи и стоимостью вычисления. Меньшая степень параллелизма учитывает более быстрое выполнение, но также и требует большего количества связи, так, если связь дорога, усиление в быстродействии вычисления может быть потеряно в дополнительной стоимости связи. Параллелизм обычно выражается, определением нескольких процессов, где каждый процесс является последовательным объектом с собственным пространством состояния. Язык может или предлагать возможность статического определения совокупности процессов или позволять динамическое создание и завершение процессов. Также возможно выразить параллелизм посредством параллельных инструкций или в функциональном языке программирования. Параллелизм не всегда явен в языке; выделение разделов кода в параллельные процессы может выполняться сложным транслятором.