Смекни!
smekni.com

Перипетии жизни (стр. 4 из 39)

Все это и позволило голландцу Ш. Мулдеру с такой убежденностью говорить о присутствии во всех существах протеина, который наиболее важен для живой природы. Только истинное вдохновение могло породить подобное предвидение. Пусть придуманного им радикала так и не нашлось в реальном белке. Гораздо важнее, что сами белки (ныне их насчитывается множество) действительно присущи всему живому, а строение их фрагментарно.

Прямые подтверждения последнего пришли довольно быстро, но из совершенно неожиданных источников — из лабораторий, где пытались постичь секреты пищеварения. Там открыли интересные соединения — ферменты, которые «умели» как бы демонтировать белки на составные части. Причем, обретя самостоятельность, такие фрагменты не поддавались больше воздействию фермента. Что же это обнаружилось? Исходные кирпичики белковых сооружений?

Догадка вполне естественная и обещающая. Она дает убедительное объяснение сложности белков. Но нет, тогда она еще ни у кого не мелькнула. Не созрела.

Дело в том, что ничего нового в данном случае не получили—отщеплены были старые знакомцы биохимиков из класса аминокислот. К середине прошлого века таких знали четыре. Их объединяла прежде всего совершенно одинаковая основа: к центральному атому углерода с одной стороны крепилась так называемая карбоксильная группа (углерод, кислород, водород), а с другой — аминогруппа (азот и водород). Непохожим были только ответвления. У каждой аминокислоты свое. Получалось что-то вроде флажков разной формы, надетых на стандартные палочки (да простят мне биохимики столь вольное сравнение).

На первых порах от белка удавалось отщеплять единичные аминокислоты. Для далеко идущих выводов об их роли просто не было оснований. В самом деле, из того, что в составе белков есть несколько разрозненных, пусть знакомых соединений, еще решительно ничего не следовало.

Тут важно другое: одну из аминокислот удалось синтезировать в лабораторных условиях при участии хорошо известной синильной кислоты — той самой, с коварным запахом горького миндаля (к ее помощи прибегают авторы детективов, когда им срочно требуется отправить к праотцам кого-то из своих героев). Главное заключалось в том, что это простое органическое соединение получили из неоргаиики. Еще одна органика из небиологических исходных. А конечным продуктом на сей раз был фрагмент белка.

К концу прошлого века из белка уже выделили 13 аминокислот. Их число продолжало расти. В возможности их небиологического синтеза теперь мало кто из биохимиков сомневался. Больше того, догадка об аминокислотных кирпичиках начала утверждаться в умах многих. А с ней и представление о близости решения проблемы происхождения жизни. Оптимизм некоторых ученых был настолько велик, что на одном из заседаний Немецкого общества естествоиспытателей известный биолог, пропагандист дарвинизма Эрнст Геккель воскликнул: «Когда вы, химики, создадите истинный белок, то он закопошится!»

До этого, казалось, рукой подать. Особенно после того как нобелевский лауреат, руководитель Химического института Берлинского университета Эмиль Фишер исчерпывающе доказал исключительно аминокислотное строение белков. Ему удалось не только синтезировать эти отдельные кирпичики, но и связать их в тандемы и даже в целые блоки (аналогичные тем, что оставались при неполном расщеплении белковых молекул).

...Время отсчитывало двадцатое столетие. От науки ждали чудес. И она не поскупилась на изощренные гипотезы и удивительные открытия. Именно в это время стала популярна идея панспермизма. Она вроде бы давала возможность одним ударом меча разрубить гордиев узелпроблемы происхождения жизни на Земле. Все сложности мгновенно оказываются за бортом, если согласиться, что жизнь занесена к нам извне. Мол, ее зародыши широко распространены во Вселенной. Попав на планету с благоприятными условиями, они могут развиваться. Что и произошло на Земле.

Было бы ошибкой посчитать, будто гипотезу породил исключительно полет нетерпеливой фантазии или, скажем, только неверие в возможность случайного синтеза на нашей планете сложных белковых молекул. У этой идеи имелась, так сказать, и материальная основа. В составе метеоритов, пришельцев из космоса, чей возраст составлял 4,6 млрд. лет (как и возраст Земли), обнаруживали соединения типа синильной кислоты и даже (по словам ряда исследователей) некоторые аминокислоты. Не случайно у гипотезы и поныне немало сторонников (правда, она претерпела некоторые изменения).

По-моему, в ней есть что-то от уловки, от попытки отодвинуть на потом решение трудной проблемы. Как и где появились сами странствующие зародыши жизни? Разве что-нибудь в поисках ответа на этот вопрос упрощается, если сказать «не на Земле» или «где-то в космическом пространстве» или «на другой планете»? И если «где-то», то почему не на Земле? Разве Земля не одно из космических тел, которое для нас обладает к тому же совершенно уникальной особенностью,— оно наиболее доступно для изучения. По крайней мере, именно это подсказывает здравый смысл.

Наверное, и им руководствовался молодой советский биохимик Александр Иванович Опарин, публикуя в 1924 г. небольшую книгу, оказавшую сильное влияние на развитие науки.

Он сделал попытку объяснить естественное возникновение органических соединений на изначально «стерильщой» Земле. Оно виделось ему как взаимодействие карбидов металлов, воды и высокой температуры, царившей на поверхности молодой планеты. Здесь все не случайно. /Во времена той публикации Опарина общепринятой еще :была теория сжатия, согласно которой Земля сначала была раскаленной, потом остывающей, обретшей свои меря и океаны благодаря потокам, хлынувшим из облаков. Отсюда в его версии высокая температура и обширные акватории.

— Только в огне, только в калильном жару моглиобразоваться вещества, впоследствии родившие жизнь,— говорил Опарин.

Он понимал: XX в. — это уже не то время, когда можно обсуждать проблемы происхождения жизни, не затрагивая особенностей места этого действа. К тому же он также хорошо знал, что органический синтез требует как минимум повышенной температуры (некоторые аминокислоты образуются просто при подогреве водно-аммиачного раствора синильной кислоты и формальдегида). И еще ему было известно о необходимости участия углерода и катализаторов, ускоряющих химические реакции. Тут подходили соединения углерода и металлов (карбиды).

Эта схема позже претерпела существенные изменения. Сама же идея непрерывного усложнения органических соединений, как возможный путь к возникновению живого, оказалась чрезвычайно плодотворной.

Как похоже это на историю с Мулдером — время безжалостно рушит возведенные с такой старательностью и трудом затейливые постройки и оставляет в неприкосновенности простой фундамент. Идея Опарина вошла в историю науки под названием принципа непрерывности.

По-видимому, она вообще уже, как говорится, носилась в воздухе. Потому что лет пять спустя известный английский биохимик "Джон Бёрдон Холдейн высказал в опубликованной статье нечто похожее, не будучи знаком с книгой Опарина. Правда, в статье имелось и существенное отличие. Холдейн подчеркивал важность передачи наследственной информации.

Опарин считал, что первые клетки с признаками жиз-?,) ни возникли в первичном океане юной Земли, так сказать, в первичном бульоне, в котором образовывались и накапливались простые органические соединения и белковые молекулы.

Каким был момент рождения первой клетки? Наверное, это произошло, когда вокруг одной из нескольких макромолекул возникла полупроницаемая оболочка. Как; возникла? Океан — это волны. Они наваливаются друг на друга, разбиваются, разлетаются брызгами. Каждая! капелька, захватившая нечто белковое из первичного бульона, могла оказаться в окружении слоя жироподобного вещества толщиной хотя бы в одну молекулу. На каком-то этапе эволюции подобные капли стали обладать самой примитивной формой обмена веществ.

Затем стали передавать эту способность потомству.

Значит, сначала у клеток появилась способность к обмену веществ? Лишь затем они стали тиражироваться? Холдейн думал иначе: первыми были макромолекулы, наделенные способностью самокопирования. Обмен веществ появился у них позднее.

Кто был прав? Ни тот ни другой не говорили тогда о химическом механизме самовоспроизводства. Тогда обоим казалось, будто предмет спора определен точно: с чего у белка началось — с обмена веществ или с тиражирования? А то, что оба свойства присущи именно белку и ничему иному, для них как бы само собой разумелось.

Между тем наука уже давно начала протаптывать тропу к совсем иным представлениям.

Вильгельм Гофмейстер жил в прошлом веке в Лейпциге и был любителем-натуралистом. Вообще-то, он занимался книготорговлей, как его отец и дед, но свободное время любил проводить за микроскопом. Было у человека, как мы сказали бы сегодня, вот такое хобби. Он знал: живые организмы состоят из клеток, и в каждой есть по ядру. А заинтересовался он тем, о чем еще не ведал никто: что происходит внутри ядра, особенно в момент деления клетки? Сделать зримым ее содержимое он мог лишь с помощью красителей. Но они убивали клетку, и о ее делении уже не могло быть речи.

Тогда Гофмейстер придумал: он увидит все от начала до конца, если соберет в строгой последовательности комплект отдельных неподвижных картин этого процесса (так художники-мультипликаторы с помощью множества изображений заставляют двигаться по киноэкрану рисованных человечков). Любознательный натуралист был вознагражден за свою изобретательность. Вот что поведала ему большая коллекция препаратов, каждый из которых представлял собой мгновение, выхваченное из жизни клетки.