Смекни!
smekni.com

Теории управления (стр. 2 из 22)

Оказывается, что в зависимости от начальных условий и па-

раметров K1,K2,K3 траектория r(t) может быть круговая,

эллипсоидная, параболическая.

Пример 2 : Нелинейная система. Описывается нелинейным дифференциальным уравнением.

Генератор колебаний :

Можно показать, что процесс

x(t) описывается дифферен-

x(t) циальным уравнением 2-го

M порядка с нелинейным

членом
.

R

CLL

C Если емкость варьировать,

то
может стать ну-

лем и тогда мы получим си-

нусоидальное колебание:

x(t)=a sin(wt+j)

(автоколебания)

Если

- положительно, то амплитуда колебаний увели-

чивается с течением времени.

Если

- отрицательно - амплитуда колебаний уменьша-

ется с течением времени до нуля.

Глава 2

Математическое описание систем (детерминированная терия) (идеальный случай)

Линейные системы, которые описываются дифференциальными

уравнениями называются динамическими системами.

Если система описывается алгебраическими уравнениями -

- это описание состояния равновесия (статические системы)

По определению

(1)

(1)- линейное дифференциальное уравнение n-го порядка.

Правая часть - это дифференциальное уравнение воз-

действия. Если Ly=0(2) ,то Ly=Px.

(2)- однородное дифференциальное уравнение - описывает

линейные динамические системы без воздействия на

них. Например колебательный контур.

Правая часть уравнения (1) описывает воздействие на ли-

нейную систему или называется управлением.

Ly=x - управление.

Если есть часть Px - то это сложное управление, учитыва-

ющее скорость, ускорение.

Передаточная функция линейной системы

От дифференциального уравнения (1) можно перейти к линей-

ной системе, т.е. к некоторому четырехполюснику.

Вх W(p) Вых

Этот четырехполюсник можно создать на элементной базе или

смоделировать на ЭВМ.

От дифференциального уравнения (1) к W(p) можно перейти

двумя путями - используя символический метод и 2-е прео-

бразование Лапласа.

Сивмолический метод Хиви Сайда.

Применив символический метод к (1) получим :

(3)

Формула (3) представляет собой отношение двух полиномов -

описание передаточной функции.

Использование преобразования Лапласа

- преобразование Лапласа, p=jw

Если мы применим преобразование Лапласа к левой части (1)

и учитывая, что

, получим :

(4)

X(p) Y(p)

W(p)

Если правая часть передаточной функции простейшая -

, то воздействие обычное. Передаточ-

ная функция будет иметь вид :

(5)

, где знамена-

тель дроби есть характеристическое уравне-

ние.

Пример : Дифференциальное уравнение 2-го порядка описы-

вается передаточной функцией :

(6)

Для нахождения решения дифференциального уравнения снача-

ла необходимо решить следующее уравнение :