Смекни!
smekni.com

Огнестойкое стекло "Пиран" (стр. 1 из 14)

Федеральное агентство по образованию

Государственное образовательное учреждение высшего профессионального образования

«ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

На тему:

«Огнестойкое стекло «Пиран»

2009

Реферат

Пояснительная записка состоит из 155 листов, 26 таблиц, 18 рисунков, содержит 134 источников литературы и 1 приложения.

ОРГАНИЧЕСКОЕ СТЕКЛО, СОСТАВ, МЕХАНИЗМЫ ПОЛИМЕРИЗАЦИИ, ОГНЕЗАЩИТА, ОГНЕСТОЙКОСТЬ, ПОКАЗАТЕЛИ ГОРЮЧЕСТИ, СВОЙСТВА ОРГАНИЧЕСКОГО СТЕКЛА.

Проведен анализ научно-технической, патентной документации по проблемам снижения горючести органического стекла. Установлена возможность использования галоген-, фосфорсодержащих замедлителей горения для снижения горючести органического стекла.

Исследовали свойства исходных компонентов и взаимодействие их в композиции.

Установлены механизмы полимеризации глицидилметакрилата и сополимеризации глицидилметакрилата + трихлорэтилфосфата.

Выбраны соотношение компонентов и параметры полимеризации.

Предложена технологическая схема получения органического стекла пониженной горючести с элементами автоматического регулирования процесса.

Предусмотрены меры безопасного ведения производства и решены экологические проблемы в производстве органического стекла.

Рассчитаны основные технико-экономические показатели проекта, доказывающие его рентабельность.

Содержание

Введение

1. Технологический раздел

1.1 Исследовательская часть

1.2 Технологическая часть

2. Раздел «Безопасность проекта»

3. Раздел «Экологичность проекта»

4. Автоматика

5. Организационно-экономический раздел

Заключение

Список использованной литературы

Приложение


Введение

Одной из наиболее быстро развивающихся областей химической промышленности является производство полимерных материалов. Но потребность в синтетических материалах постоянно растет и не удовлетворяется существующим уровнем их производства. Рост производства и потребления многих полимерных материалов в различных областях техники несколько сдерживается из-за ряда серьезных недостатков, присущих таким материалам, в частности их повышенной пожароопасности.

Во всем мире уделяется большое внимание повышению пожарной безопасности. Для её обеспечения помимо активных средств предупреждения и защиты от развития очага пожара, в конструкции должна использоваться пассивная защита, затрудняющая возникновение и предотвращающая развитие очага пожара, т.е. должны применяться материалы, имеющие низкую пожарную опасность. Наиболее перспективным направлением является модификация существующих многофункциональных полимеров.

Результатом научно-исследовательских работ, инициированных крупными зарубежными фирмами-производителями изделий из стекла, стало появление в последнее время различных видов светопрозрачных противопожарных конструкций, применяемых в строительстве.Среди наиболее известных компаний, освоивших выпуск огнезащитных стёкол, можно назвать такие известные мировые бренды, как SaintGobain, SHOTT и другие.

Компания SaintGobain, предлагает пожаростойкое стекло «Файветар» толщиной 5 мм, которое является самым тонким и экономичным стеклом, специально созданным для использования внутри здания там, где 30‑минутная устойчивость к повышенным температурам соответствует нормам пожарной безопасности. «Файветар» является монолитным стеклом с механической прочностью, возможным для использования в дверях и перегородках в местах, где интенсивное движение людей должно быть защищено.

Одним из видов продукции компании SHOTT, занимающейся производством всех видов стекла, – огнестойкое стекло «Пиран», которое немецкая компания позиционирует как самое тонкое стекло в мире. По информации специалистов компании, такое стекло толщиной 5 мм можно применять в тех случаях, где огнестойкость строительных конструкций должна составлять от 30 до 60 мин.

В России специальные противопожарные стекла практически не производятся, используются армированные листовые. При пожаре такое стекло может треснуть, однако арматура удержит осколки на месте, предотвращая тем самым распространение огня. При строительстве новых крупных объектов противопожарные стекла обычно закупают за рубежом. Таким образом, выпуск светопрозрачных огнеупорных строительных конструкций является актуальной проблемой.

Несмотря на довольно значительное количество производителей, объёмы производства и реализации противопожарного стекла в России ещё очень малы, что обусловлено его высокой стоимостью. Тем не менее, тема пожаростойкого остекления активно развивается, наблюдается положительная динамика увеличения объёмов потребления. На повестке дня – испытания новых видов пожаростойких светопрозрачных конструкций.

Таким образом, создание полимерных материалов с пониженной горючестью, в том числе органического стекла, представляет собой весьма актуальную задачу. Это не только поиск оптимального замедлителя горения для конкретного материала и снижения его горючести, а также сохранение и улучшение всего комплекса свойств полимера.

1. Технологический раздел

1.1 Исследовательская часть

1.1.1 Информационный анализ с целью выбора направления исследования

Полимеры для органического стекла

Органическое стекло-это техническое название прозрачных в видимой части спектра твердых полимерных материалов. Органическое стекло находит широкое применение. В нем испытывают потребность: промышленность и транспортное строительство, авиастроение, радиотехника, приборостроение, медицина и сельскохозяйственное производство.

К числу полимеров, используемых для производства органического стекла относятся: полиметакрилаты, полиакрилаты, полистирол, поликарбонаты, сополимеры эфиров целлюлозы, полимеры аллиловых соединений, сополимеры винилхлорида.

Сополимер метилметакрилата с акрилонитрилом, поликарбонат, эфиры целлюлозы и сополимер винилхлорида с метилметакрилатом обладают достаточной атмосферостойкостью. Полистирол менее атмосферостоек; при длительном воздействии солнечного света он желтеет и становится хрупким.

Среди оптических свойств органического стекла наиболее важны показатель преломления, оптическая прозрачность, оптическое искажение и фотоупругость.

В табл. 1.1 приведены показатели преломления некоторых органических стекол, измеренные относительно воздуха в свете желтого дуплета Na


Таблица 1.1. Показатели преломления органических стекол

Полимеры Показатель преломления
1 2
ПММА непластифицированный 1,4895
ПММА пластифицированный 1,4920
Полиакрилат повышенной термостойкости 1,5466
Полиэтилметакрилат 1,4866
Сополимер ММА с акрилонитрилом 1,5096
Поликарбонат 1,5896
Полидиэтиленгликоль-бис – 1,4996
Ацетобутират целлюлозы 1,4754
Полистирол 1,5924
Феноло-формальдегидная отвержденная смола 1,7004

От одной поверхности листового ПММА стекла отражается 3,5–4% падающего светового потока, а от двух – 8%. Таким образом, оптическая прозрачность ПММА органического стекла не может превышать 92% при условии, что рассеяние и поглощение света равны нулю.

Оптическая прозрачность полистирола, поликарбоната, полидиэтиленгликоль – бис –, составляет до 90%, сополимера метилметакрилата с акрилонитрилом‑85%, сополимера винилхлорида с метилметакрилатом – 75%. Эфироцеллюлозные органические стекла пропускают свет различной длины неодинаково. Так, оптическая прозрачность для излучений с длиной волны 300, 400, 500 и 600 нм составляет 12–20, 23–55, 70–80 и 85–90%.

По оптической прозрачности органические стекла делят на прозрачные в блоке и прозрачные только в пленках. К первой группе относятся полимеры и сополимеры метилметакрилата, полистирол, поликарбонат и др. полимеры, обладающие незначительным поглощением света; ко второй – органические стекла на основе эфиров целлюлозы, винипроз, литые эпоксидные и феноло-формальдегидные смолы. Основные свойства оптических материалов приведены в таблице 1.2.

Полистирол и ПММА относятся к числу наиболее известных и широко используемых полимеров с высоким светопропусканием, однако, они характеризуются недостаточной устойчивостью к тепловым, химическим и абразивным воздействиям. Указанных недостатков лишены аллиловые полимеры, которые превосходят ПММА по абразивостойкости в 30–40 раз и по теплостойкости на 30–60°C. Наиболее распространенным для получения аллиловых полимеров является полидиэтиленгликоль – бис –.

Таблица 1.2. Основные свойства оптических материалов

Показатель ПММА ПС ПК ПДЭГБАК
Коэффициент светопропускания при λ=530 нм 99,1 - - 91
Показатель преломления 1,491 1,59 1,58 1,498
Средняя дисперсия 86 - - -
Температурный коэффициент показателя преломления, К-1 12,2120,22 12 12–14 -
Теплостойкость по Мартенсу, К 333–393 - - -
Коэффициент линейного расширения, К-1 9 6,3–9 6–7 11,4
Теплопроводность, Вт/ 0,18 0,09–0,14 0,2 -
Модуль упругости, МПа 2900 2700–3100 2200–2500 -
Модуль сдвига, МПа 1100 - - -
Твердость по Бринеллю, МПа 130 - - -
Плотность, кг/м3 1,18–1,2 1,05–1,1 1,17–1,24 1,32
Теплоемкость, Дж/ 1,47 1,26–1,34 1,18 -
Показатель поглощения, см-1при λ=400 нм 0,03 - - -

1при 293–330 К 2при 330–378 К