Смекни!
smekni.com

Технологический процесс изготовления корпуса расточной оправки (стр. 15 из 25)

В конструкции станка 16К20Ф3 можно встроить силовой привод с диаметром поршня не более 120 мм, Если при расчете по вше указанной формуле диаметр поршня получится более 120мм, то следует применять гидравлический привод, где за счет регулирования давления масла можно получить большие исходные усилия. При заданном усилии Q подбираем давление масла (Рг = 1,0; 2,5; 5,0; 7,5 МПа), чтобы диаметр поршня не превышал 120мм.

– для пневмопривода.

Следовательно, в качестве привода, для данного патрона, принимаем пневмоцилиндр стандартного диаметра D = 100 мм.

Ход поршня цилиндра рассчитывается по формуле:

SQ = SW / iп, , (9.12)

SQ = 5 / 2=2,5.

где SW – свободный ход кулачков, который можно принять равным 5 мм;

iп = 1/iК – передаточное отношение зажимного механизма по перемещению. Значение SQ принимать с запасом 10…15 мм.

Принимаем пневматический цилиндр с D = 100 мм, а SQ = 20 мм.

9.6 Расчет погрешности установки заготовки в приспособлении

Данный раздел выполняется после разработки конструкции патрона и простановки размеров. Погрешность установки определяется по формуле:

,

где εб – погрешность базирования, равная при данной схеме нулю, так как измерительная база используется в качестве технологической.

εз – погрешность закрепления – это смещение измерительной базы под действием сил зажима (

).

εпр – погрешность элементов приспособления, зависящая от точности их изготовления.

,

где ωАΔ – колебания замыкающего размера АΔ.

Δ1 – погрешности из-за колебания зазоров в сопряжении центра вставленного в гнездо крышки (Δ1 = Sнб- Sнм).

Таким образом:

;

.

Погрешность установки не должна превышать величин:

для черновой обработки – εудоп = zminшл (zminшл – минимальный припуск на шлифование); εудоп = 0,05 мм.

εудоп = 0,05 мм > εу = 0,034 мм, следовательно, патрон разработан, верно, и может использоваться на 15-й токарной (чистовой) операции.

9.7 Описание работы трехкулачкового самоцентрирующего патрона

Патрон работает следующим образом: заготовка устанавливается левым торцевым отверстием на плавающий центр и поджимается жестким задним вращающимся центром до упора с торцевыми кулачками. Масло под действием давления создаваемого насосом подаётся через систему каналов в муфте в левую полость гидроцилиндра. Под действием гидравлического усилия поршень вместе со штоком в виде клина перемещается вправо и выдвигает постоянные кулачки в виде рычагов из корпуса патрона. При дальнейшем движении эти кулачки зажимают заготовку по наружной цилиндрической поверхности. Сочетание двух зажимов позволяет вести обработку на максимальных режимах резания. Как только заготовка зажата, шпиндель станка получает вращение от двигателя посредствам зубчатых передач, представляющих часть кинематической схемы станка. Шпиндель соединен с гидроцилиндром силового привода, а так же с корпусом патрона, в который вставлены постоянные кулачки. Патрон вместе с закреплённой в нём заготовкой получает вращение. После обработки большей части контура вала без остановки патрона включается силовой привод и перемещая центровик влево, осуществляется разжим заготовки радиальными кулачками и их перемещение в корпус патрона, появляется возможность обработки конца вала который был под кулачками. Обработка ведется на пониженных режимах резания. После окончания обработки, когда шпиндель отключен от главного движения, отжимается задний центр и заготовка снимается.

Сборочный чертёж поводкового патрона представлен в графической части лист 06.М15.660.50.00.СБ.

10. ПРОЕКТИРОВАНИЕ КОНТРОЛЬНОГО ПРИСПОСОБЛЕНИЯ

Задача раздела - спроектировать контрольное приспособление, позволяющее контролировать углы в любом месте на поверхности инструмента, а также нецентричность поперечной кромки всех деталей из данной группы сверл, способом светового сечения.

10.1 Оценка точности приспособления

На рисунке 10.1 изображены контролируемые величины.

Рис. 10.1. Контролируемая величина

Точность контролируемых величин зависит от точности применяемого микроскопа. В данном случае применяется микроскоп ММИ-2 по ГОСТ 5405-54 с ценой деления 0,005 мм для линейных размеров и 1 мин для угловых размеров, с оптическим увеличением в 10раз.

Предельная погрешность измерения рассчитывается по следующей формуле:

. (9.1)

В нашем случае допуск на угловые размеры составляем ±10 следовательно, погрешность измерения не окажет существенного влияния на контролируемый размер. Поэтому применяем метод контроля световым сечением с применением микроскопа.

9.2 Описание контрольного приспособления

Приспособление предназначено для контроля углов в любом месте на поверхности инструмента, а также нецентричность поперечной кромки всех деталей из данной группы сверл, способом светового сечения.

Приспособление содержит плиту базовую 1, угольник 2, призму опорную 3, отражательную призму 4, излучатель световых волн 5, тубус микроскопа 6, специальную опору 7, зеркало 9 и стандартные изделия (винты, шпонки, гайки).

Приспособление работает следующим образом: деталь (сверло) устанавливается на две опорные призмы, которые крепятся к базовой плите 1, при этом лапка сверла входит в отверстие специальной опоры 7, крепящейся к угольнику 2 и поджимается винтом 13 . Отражательная призма 4 с зеркалом 9 пододвигается под режущую часть сверла и под тубус микроскопа 6. Для контроля угла наклона поперечной кромки включается левый излучатель световых волн 5, и исследуемый объект освещается плоским пучком света. Свет отражается от опоры в тубус микроскопа, при этом в нем видна неотраженная часть (сечение) сверла. Для контроля нецентричности поперечной кромки включается правый излучатель световых волн 5, и исследуемый объект освещается плоским пучком света. Свет отражается от опоры в тубус микроскопа, при этом в нем видна неотраженная часть (сечение) сверла. Для контроля главного угла в плане необходимо убрать из под сверла отражательную призму и не подавать пучков света, при этом в микроскоп виден контур сверла. Измерение окончено.

Сборочный чертёж контрольного приспособления представлен в графической части лист 06.М15.660.60.00СБ

11. ПРОЕКТИРОВАНИЕ РЕЖУЩЕГО ИНСТРУМЕНТА

Задача раздела - выбрать материал, спроектировать геометрию режущего инструмента и применить его на операции 40 – шлифование стружечных канавок.

11.1 Исходные данные:

Вид обработки – шлифование (предварительное);

Оборудование – специальный шлифовальный NU535CNC.

11.2 Выбор материала и проектирование геометрии режущего инструмента

Геометрия режущего инструмента зависит от формы стружечной канавки. Размеры круга определяются с учетом размеров детали из данной группы, и они приведены на листе 06.М15.660.70.14. Правка круга осуществляется алмазным карандашом при следующих режимах: VК = 1 - 3 м/с, SПР = 1 – 2 м/мин, SПОП = 0,02 – 0,04 мм/дв.ход.

Материал режущего инструмента выбираем исходя из вида и твердости обрабатываемого материала. Согласно рекомендациям [4] выбираем материал 24А12НСТ26Б.

Абразивный материал – 24А – белый электрокорунд;

Зернистость – 12 мкм;

Степень твердости – СТ2– средне твердый;

Вид связки – Б1 – бакелитовая (карбида бора 50%).

12. ИССЛЕДОВАНИЕ В ОБЛАСТИ ПОВЫШЕНИЯ ИЗНОСОСТОЙКОСТИ РЕЖУЩЕЙ ЧАСТИ СВЕРЛА ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ МЕТОДОМ ИОННОЙ ИМПЛАНТАЦИИ

12.1 Описание ситуации

При обработке деталей резанием с применением лезвийного инструмента из инструментальной быстрорежущей стали, происходит его интенсивный износ в связи с различными факторами, такими как: высокие температуры в зоне резания, вызванные большим трением в контакте заготовка – инструмент; повышение вибрации в процессе обработки, вызванные динамикой станка; огромные давления на инструмент (усилия деформации); физико-механические свойства обрабатываемого и обрабатывающего материала; геометрические параметры режущего инструмента; элементы режимов резания; свойства применяемых смазывающе-охлаждающих технологических смесей (СОТС); электрические явления, возникающие в контакте режущий инструмент – заготовка; схема резания и др. Так же это ведет к увеличению вспомогательного времени, затрачиваемого на под наладку технологической системы и смену инструмента.

Административное противоречие – износостойкость лезвийных инструментов при обработке металлов резанием недостаточно высока и не соответствует постоянно ускоряющемуся темпу развития высокоскоростных станков, а так же совершенствованию конструкционных жаропрочных сталей.

Повысить износостойкость лезвийного инструмента на основе инструментальной быстрорежущей стали можно за счет применения технических решений, снижающих воздействие вышеперечисленных факторов.

12.2 Анализ ситуации

При обработке резанием в связи с вышеперечисленными факторами происходит диффузионное, адгезионное, химическое и другие виды изнашивания РИ. Считаем, что в данной ситуации при данном методе обработки детали выбраны оптимальные режимы резания, применяются прогрессивные виды СОТС, применена оптимальная схема резания, которая позволяет свести к минимуму давление на инструмент, выбран правильно заточной инструмент (геометрия инструмента), выбран точный станок с относительно жесткой системой станок – приспособление – инструмент – деталь (СПИД), что позволяет свести к минимуму вибрации в процессе резания.