Смекни!
smekni.com

Реактор разложения оксидов азота (стр. 2 из 11)

Температура газа в реакторе поз.TJRSHLAHL-126Сопротивление реактора поз.PI-239 Непрерывно, показания и регистрация в ЦПУ. Запись ежечасноНепрерывно показания в ЦПУ. Запись 2 раза в смену 230-3500СНе более 8 кПа (800 мм.вод.ст.) Преобразователь тер моэлектрический ТХК. Прибор КСП-4 Класс точности 0,5. Шкала 0-6000С. Δик ±5,70СДифманометр 13ДД 11. Класс точности1. Перепад 16 кПа (0,16 кгс/см2). Вторичный прибор ПВ2.2 Класс тичности1. Шкала 0-1600 мм. вод.ст. Δнп ±60СНе нормируется Машинист Машинист
Расход амми ака поступа ющего в реа ктор поз. FIRC-319Регулирование соотношения количества аммиака и хвостовых газов поступающих в реактор поз. FIR-318 и FIRC-319 Непрерывно показания и регистрация в ЦПУ. Запись ежечасноНепрерывно показания и регистрация в ЦПУ. Не более 100 нм3/час Диафрагма сдвоенная. Дифманометр 13ДД11. Перепад 6,3 кПа(0,063кгс/см2). Класс точности 1.Вторичный прибор ПВ10.2Э. Класс точности 1. Шкала 0-100 нм3/час. Регулятор ПР3.34. Регулирующий клапан «НЗ» Ду-6, Ру-16 Не нормируется Машинист

Технологический расчёт

Определить потерю давления и на данном местном сопротивлении

Рисунок 1 – Расчётная схема сопротивления реактора.


Уравнение Бернулли для идеальной жидкости возможно применить для данного случая, так как газ имеет пренебрежимо малую вязкость:

(9)

Диаметры D1 и D3 равны, поэтому возьмём в расчёт второй переход.

Для вертикального расположения реактора координаты центров тяжести сечений 1 – 1 и 2 – 2 одинаковы, т. е. z1 = z2.

Поэтому:

(10)

откуда находим:

(11)

Скорость газа в сечении 1 – 1 на основании уравнения расхода:

(12)

На основании уравнении неразрывности, для соседних сечений:

(13)

поэтому скорость газа в сечении 2 – 2:

(14)

Следовательно:

Единицы давления и напора связаны соотношением:

9,81 Па = 1 мм вод. ст.

Отсюда

р12 = 1,42 Па = 0,14 мм вод. ст.

Расчёт ведётся по [6, 19]


3 МЕХАНИЧЕСКАЯ ЧАСТЬ

3. 1 Описание конструкции и механические расчёты оборудования

Реактор разложения оксидов азота изготовлен из нержавеющей стали. Это вертикальный, цилиндрический аппарат со съемной верхней крышкой. Диаметр аппарата 2224 мм, высота 3900 мм.

В верхней крышке реактора расположена решетка с отверстиями диаметром 15 мм для равномерного распределения газа. Внизу аппарата на колосниковую решетку кладется мелкая сетка из нержавеющей стали, на которую насыпается катализатор СТК(среднетемпературный катализатор) слоем 400 мм, кладется еще одна мелкая сетка из нержавеющей стали, на которую насыпается катализатор АВК-10Мили ИК 1-6слоем 400 мм. Между катализатором АВК 10М и СТК имеется отборная точка для определения эффективности работы катализатора АВК 10М (ИК 1-6). Во избежание попадания катализаторной пыли в турбодетандер газодувной машины на выходе из ректора установлен фильтр. Реактор имеет 4 штуцера: 1) штуцер А предназначен для входа хвостовых газов; 2) штуцер Б предназначен для выхода хвостовых газов; 3) штуцер В предназначен для установки термопары, отслеживающей характеристику среды до прохождения слоёв катализатора; 4) штуцер B1 предназначен для установки термопары, отслеживающей характеристику среды на выходе из катализаторных слоёв. Реактор теплоизолирован стекловатой.


Механические расчёты

Расчёт обечайки


Рисунок 2 - Расчётная схема гладкой цилиндрической обечайки.

Определить толщину стенки цилиндрической обечайки аппарата и проверить её работоспособность.

Исходные данные

D = 2212 мм - внутренний диаметр обечайки;

P = 0,32 МПа - рабочее внутреннее избыточное давление;

t = 290 °С - максимальная рабочая температура среды;

Материал обечайки – сталь Х18Н10Т ГОСТ 5632-72;

C1 = 2 мм - прибавка на компенсацию коррозии;

Вид сварного шва - стыковой с односторонним сплошным проваром, выполняемый автоматической сваркой;

Длина контролируемых швов от общей длины составляет до 100 %.

1 Расчётная толщина стенки цилиндрической обечайки корпуса, нагруженного внутренним давлением:

SR=

(15)

где P = 0,32 МПа - расчётное внутреннее избыточное давление (равное рабочему);

= 105 МПа - допускаемое напряжение для стали X18H10T при расчётной температуре t = 290 °C (равной максимальной рабочей) по ГОСТ 14249-89(Приложение 3);

= 0,9 - коэффициент прочности продольного сварного шва (для заданного видасварного шва и объёма контроля) по ГОСТ 14249-89 (Приложение 5).

1.1 Проверка необходимости учёта расчётного давления в знаменателе формулы (15). Условие необходимости учёта расчётного давления:

(16)

Т. к. критерий учёта расчетного давления больше, чем пятьдесят единиц, т. е.
> 50- то расчётным давлением в знаменателе формулы (15) воз­можно пренебречь.

2 Проверка применимости расчётных формул.

Условие применимости расчётных формул:

(17)

Т. к. критерий применимости расчётных формул

- торасчётные формулы применимы.

3 Исполнительная толщина стенки обечайки.

Исполнительная толщина стенки обечайки;

(18)

Принимаем, с учётом округления до стандартного размера, S = 6 мм.

4 Проверка принятой толщины стенки.

В данном случае проверка принятой толщины стенки производится из условия проч­ности по допускаемому внутреннему избыточному давлению.

Допускаемое внутреннее избыточное давление:

(19)

Т. к. рабочее внутреннее избыточное давление в аппарате меньше допускаемого внут­реннего избыточного давления, т. е. P = 0,32 МПа < [Р] = 0,34 МПа - то прочность обечайки корпуса аппарата обеспечена.

Следовательно, принимаем толщину стенки аппарата S = 6 мм.

Окончательно принимаем исполнительную толщину стенки цилиндрической обечайки аппарата, нагруженного внутренним избыточным давлением, S = 6 мм.

Расчёт ведётся по [5, 9]

Расчёт опоры

Рисунок 3 – Расчётная схема вертикальной опоры-стойки.

Проверить на прочность для рабочих условий эллиптическое днище корпуса вертикального аппарата установленного на опоры-стойки от воздействия опорных нагрузок.

Исходные данные

D = 2212 мм - внутренний диаметр обечайки;

P = 0,32 МПа - рабочее внутреннее избыточное давление;

t= 290 °С - максимальная рабочая температура среды;

Материал обечайки – сталь Х18Н10Т ГОСТ 5632-72;

C1 = 1 мм - прибавка на компенсацию коррозии;

S = 6 мм – толщина стенки эллиптического днища в зоне приварки опоры;

Q = 36940 H – максимальный вес аппарата в условиях эксплуатации;

М = 0 – принятый равным нулю изгибающий (внешний) момент, действующий на обечайку в сечении, где расположены опорные узлы;

n = 3 – принятое к установке количество опор-стоек;

d4 = 2010 мм – диаметр опорной окружности;

d2 = 340 мм – наибольший поперечный размер опоры- стойки;

- коэффициент прочности сварного шва;

- угол между осью стойки и осью аппарата

Тип опоры-стойки – вертикальная;

Требования к монтажу аппарата – обычный монтаж.

1 Вертикальное усилие на опорную стойку

(20)

где

– коэффициент, учитывающий неравномерность распределения нагрузки по опорам и принимаемый в зависимости от количества опор и требований к точности монтажа; т. о. в данном случае
.

(21)

2 Определение допускаемого вертикального усилия на опорную стойку

2. 1 Радиус средней кривизны днища у опорной окружности