Смекни!
smekni.com

Ладная тематика ов, эссе и курсовых работ студентов по разделам программы (стр. 17 из 21)

1.8. Ряды. Числовые ряды, сходимость и сумма ряда, действия с рядами. Функциональные ряды, их интегрирование и дифференцирование. Степенные ряды, радиус сходимости. Разложение функций в степенные ряды, ряды Тейлора и Маклорена. Ряды Фурье.

1.9. Численные методы в решении задач дифференциального и интегрального исчисления.

2. Линейная алгебра с элементами аналитической геометрии (до 60 аудиторных часов, или до 3 кредитов ECTS общей трудоемкости).

2.1. Декартовы координаты. Векторы. Базис. Операции над векторами. Скалярное произведение. Длина вектора, угол между двумя векторами. Ортогональность, коллинеарность, компланарность. Векторное произведение. Смешанное произведение. Определители второго и третьего порядков. Определители n-го порядка. Алгебраические дополнения и миноры. Вычисление определителей разложением по столбцу или по строке.

2.2. Прямая и плоскость, гиперплоскость. Прямая на плоскости. Расстояние от точки до прямой. Угол между прямыми. Угол между плоскостями. Угол между прямой и плоскостью. Кривые второго порядка: окружность, эллипс, гипербола, парабола. Поверхности второго порядка.

2.3. Матрицы и действия с ними. Симметричная, диагональная, единичная матрицы. Ортогональная матрица. Обратная матрица. Системы линейных алгебраических уравнений. Теорема Кронекера – Капелли о совместности системы. Методы решения системы линейных алгебраических уравнений.

2.4. Линейные векторные пространства. Линейная зависимость и линейная независимость системы векторов. Преобразование координат вектора при переходе к новому базису.

2.5. Комплексные числа и многочлены. Изображение комплексных чисел на плоскости. Модуль и аргумент комплексного числа. Алгебраическая и тригонометрическая формы комплексного числа. Формула Эйлера. Корни из комплексных чисел. Многочлены, разложение многочленов на множители, деление многочленов, теорема Безу о виде остатка.

2.6. Линейные операторы и их матрицы. Преобразование матрицы линейного оператора при замене базиса. Ранг матрицы. Собственные значения и собственные векторы линейного оператора. Характеристический многочлен линейного оператора, его корни. Приведение матрицы линейного оператора к диагональному виду. Линейные, билинейные, квадратичные формы. Критерий Сильвестра положительной определенности квадратичной формы. Приведение квадратичной формы к каноническому виду ортогональным преобразованием. Нормы векторов и матриц.

2.7. Неотрицательные матрицы, положительные матрицы. Разложимые и неразложимые матрицы. Теорема Перрона – Фробениуса о наибольшем действительном положительном собственном значении. Круги Гершгорина и собственные значения матрицы. Граф матрицы. Стохастические матрицы. Обратно-симметричные матрицы, сильно-транзитивные матрицы. Методы определения разложимости и неразложимости матрицы. Алгебраические и итеративные методы нахождения собственного вектора, соответствующего наибольшему положительному собственному значению. Некоторые матрицы специального вида.

2.8. Численные методы в решении задач линейной алгебры.

3. Элементы дискретной математики (до 30 аудиторных часов, или до 2 кредитов ECTS общей трудоемкости).

3.1. Элементы математической логики, теории множеств и общей алгебры. Дискретные объекты и структуры в математике. Метод математической индукции. Бинарные и n-арные отношения. Необходимые и достаточные условия. Логические (булевы) переменные. Алгебра логики, функции алгебры логики (булева алгебра, булевы функции). Множества, отображения, мощности. Алгебра множеств. Дизъюнктивные и конъюнктивные нормальные формы. Минимизация булевых функций. Функциональная полнота систем булевых функций. Понятие группы. Абелева группа. Подгруппы. Циклическая группа. Изоморфизмы, автоморфизмы, гомоморфизмы. Кольца, тела и поля.

3.2. Элементы комбинаторики. История развития, генезис понятий, классические задачи. Бином Ньютона. Перестановки, сочетания, размещения. Перечисление комбинаторных объектов и производящие функции. Рекуррентные соотношения. Разбиения и размещения. Логические методы комбинаторного анализа. Основные комбинаторные тождества для чисел сочетаний. Полиномиальные коэффициенты и основные комбинаторные тождества для них.

3.3. Элементы теории графов. История развития, генезис понятий, классические задачи. Определение графа. Неориентированные и ориентированные графы. Отношения смежности и инцидентности. Матричные представления графов. Пути и циклы. Связность, компоненты связности. Поиск в графе, поиск «в глубину», поиск «в ширину». Деревья. Кратчайшие пути. Эйлеровы пути и циклы. Гамильтоновы пути и циклы. Сети и потоки в сетях. Методология «ветвей и границ».

3.4. Некоторые численные методы и алгоритмы в решении задач дискретной математики.

4. Основы теории обыкновенных дифференциальных и разностных уравнений (до 40 аудиторных часов, или до 2 кредитов ECTS общей трудоемкости).

4.1. Задачи, приводящие к дифференциальным уравнениям. Обыкновенное дифференциальное уравнения (ОДУ). Интегрирование в квадратурах. Фазовое пространство. Изоклины. Интегральная кривая. Задача Коши для ОДУ. Теорема существования и единственности решения задачи Коши. Общее и частное решения. ОДУ высших порядков. Понижение порядка. Краевая задача. Однородное и неоднородное ОДУ, принцип суперпозиции решений. Фундаментальная система решений, определитель Вронского. Метод Лагранжа вариации произвольных постоянных. Построение фундаментальной системы решений по корням характеристического уравнения. Системы ОДУ.

4.2. Устойчивость решений ОДУ. Непрерывная зависимость решения задачи Коши от начальных значений и параметров. Устойчивость и асимптотическая устойчивость в смысле Ляпунова. Понятие о функции Ляпунова. Типы точек покоя. Исследование на устойчивость по первому приближению с помощью матрицы Якоби.

4.3. Разностные уравнения. Примеры разностных уравнений. Построение фундаментальной системы решений по корням характеристического уравнения. Общее и частное решения. Устойчивость положения равновесия.

4.4. Некоторые численные методы решения дифференциальных и разностных уравнений.

5. Вероятность с элементами математической статистики и анализа данных (до 100 аудиторных часов, или до 5.5 кредитов ECTS общей трудоемкости).

5.1. Множество элементарных исходов опыта, событие, теоретико-множественные операции над событиями. Схема опыта с равновозможными исходами. Интуитивное определение вероятности события. Математическое определение вероятности. Алгебра событий. Аксиомы теории вероятностей и следствия из них. Вероятностное пространство как парадигма вероятностного мышления и как корректная математическая модель случайного явления. Совместные и несовместные события. Теорема сложения вероятностей. Условная вероятность. Зависимые и независимые события. Формула полной вероятности. Формула Байеса как теорема гипотез.

5.2. Случайная величина как математическая модель вероятностного явления. Функция распределения и функция плотности распределения вероятностей случайной величины, их свойства. Случайный вектор, зависимые и независимые случайные величины, условные законы распределения. Функции от случайных величин. Примеры стандартных случайных величин: Бернулли, биномиальная, Пуассона, показательная (экспоненциальная), равномерная, Гаусса (нормальная). Предельные теоремы о связи биномиальной случайной величины с пуассоновской, с гауссовской (локальная и интегральная теоремы Муавра – Лапласа). Правило «три сигма», таблица стандартного нормального распределения.

5.3. Числовые характеристики случайных величин. Математическое ожидание и дисперсия, их свойства. Понятие интеграла Стилтьеса. Неравенство Чебышёва. Квантиль распределения случайной величины. Таблицы квантилей стандартных случайных величин. Понятия неопределенности, энтропии, количества информации. Условное математическое ожидание. Дисперсионная (ковариационная) и корреляционная матрицы случайного вектора. Ковариация и коэффициент корреляции двух случайных величин, свойства некоррелированности и независимости. Многомерное нормальное распределение. Линейное преобразование нормального случайного вектора. Декоррелирующее преобразование, вырожденность и снижение размерности, эллипсоиды рассеивания. Элементы аппарата производящих и характеристических функций в теории вероятностей.

5.4. Предельные теоремы в теории вероятностей. Закон больших чисел, теорема Чебышёва. Понятие о законе «нуля и единицы» Колмогорова, о леммах Бореля – Кантелли, об усиленном законе больших чисел. Центральная предельная теорема для одинаково распределенных независимых случайных величин, интегральная теорема Муавра – Лапласа как её следствие. Понятие о теореме Ляпунова для неодинаково распределенных случайных величин. Оценивание скорости сходимости частоты к вероятности в схеме независимых испытаний Бернулли, сравнение результатов использования неравенства Чебышёва и интегральной теоремы Муавра – Лапласа.

5.5. Дискретная марковская цепь (ДМЦ) с конечным числом состояний. Переходные вероятности, матрица переходных вероятностей. Однородность ДМЦ. Классификация состояний ДМЦ. Разложимость и неразложимость ДМЦ. Асимптотическое поведение ДМЦ, эргодичность, предельное распределение вероятностей состояний. Элементы аппарата производящих функций в исследовании ДМЦ. Понятия ДМЦ с бесконечным числом состояний, марковской цепи с непрерывным аргументом, диффузионного марковского процесса. Элементы общей теории случайных процессов, свойства стационарности и эргодичности. Понятие о спектральном анализе случайных процессов. Элементы теории процессов массового обслуживания.