Смекни!
smekni.com

Численное решение краевых задач для двумерного уравнения колебания (стр. 5 из 10)

Если в уравнении (2.4)

, то получаем явную схему

которую перепишем в виде

В этом случае обращается диагональная матрица, требующая лишь 0(N) арифметических операций.

Условием устойчивости схемы (2.4)-(2.6) будет

Отсюда видно, что условием устойчивости явной схемы будет

Из условия (2.7) видно, что схемы о

, в том числе чисто неявная схема при
и симметричная схема при
, абсолютно устойчивы.

Если имеем уравнение с переменными коэффициентами, т.е.

(2.8)

то

Условие устойчивости схемы (2.4)-(2.6) с эллиптическим оператором (2.8) имеет вид

Отсюда получаем условие устойчивости явной схемы в виде

(2.9)

Условие устойчивости (2.9) налагает весьма жесткие огра­ничения на шаг по времени

и выход на заданный момент време­ни
по явной схеме требует неоправданно большого числа вре­менных шагов.

Из условия (2.9) видно, что выбор шага

существенно за­висит от количества пространственных переменных р и от вели­чины М. С ростом числа р и для быстро меняющегося коэффици­ента теплопроводности K=K(x,t) шаг
становится еще мель­че. В этом случае схема (2.4)-(2.6) при
становится неэф­фективной, так как выход на заданный момент времени t=T тре­бует слишком большого числа временных шагов.

Чисто неявная схема (

) (2.4)-(2.6) абсолютно устойчива, т.е. на параметры сетки h и
не налагаются ограничения. Поэтому счет можно вести более крупными шагами hи
и тем самым удается значительно понизить порядок системы, уменьшить количество временных шагов, необходимых для достижения момента времени t = Т .

В неявных схемах придется решать системы алгебраических уравнений, как правило, высокого порядка и с разреженными матри­цами. Итак, реализация систем алгебраических уравнений для мно­гомерных задач в общем случае представляется невозможной из-за громоздкости порядка системы (проблема памяти ЭВМ), большого объема арифметических операций.

Таким образом, лучшими качествами явной и неявной схем являются количество арифметических операций, равное 0(N) в явной схеме, и абсолютная устойчивость неявной схемы, недостат­ками - условная устойчивость явной схемы и большое количество арифметических операций в неявной схеме. Отсюда ясно, что если построим разностные схемы, сочетающие в себе лучшие качества обычных явных и неявных разностных схем, то можно эффективно решать многомерные задачи математической физики.

Итак, безусловная (абсолютная) устойчивость и независимость количества арифметических операций, требуемые для вычисления приближенного решения задачи в отдельной точке сетки от общего количества узлов сеточной области, определяют класс экономичных схем.

Уравнение (2.1) можно аппроксимировать по-другому, стремясь упростить вычислительный процесс. Уравнение (2.1) аппроксимируем разностным уравнением

В этой схеме аппроксимация по первому направлению неявная, а по всем остальным - явная.

Реализация этой схемы идет по направлению

, как в од­номерном случае методом линейной прогонки, затратой арифметичес­ких операций порядка
. Однако схемы (2.10), (2.5), (2.5) условно устойчивы. Таким образом, из требований экономичности разностной схемы первое условие не выполнено, а второе - выпол­нено. Поэтому схемы типа (2.10), (2.5), (2.6) не относятся к классу экономичных схем, они конструируются специальным образом.

2. Достижением вычислительной математики является разра­ботка экономичных методов решения многомерных краевых задач ма­тематической физики. Первые экономичные схемы были схемами в дробных шагах по времени t. Они предложены и обоснованы в 1955 г. одновременно американскими учеными D.W. Peacemdn , H.H.Rachford и J.Douglas.

Характерной особенностью экономичных схем этого периода является то, что все они основывались на идее ведения дробных моментов времени и поэтапном решении р задач в промежутках

. Решением исходной задачи будет решение последней р -й задачи в момент времени
. Решения осталь­ных (р-1) задач являются вспомогательными в моменты времени
. Таким образом, наряду с основной сеткой по
рассматривается вспомогательная сетка
. Все эконо­мичные схемы этого периода относятся к схемам последовательного перехода по времени t. Следуя Н. Н. Яненко, назовем их ме­тодом дробных шагов.

В 1965г. А. А. Самарский предложил и обосновал экономичный метод без привлечения вспомогательной сетки

, т.е. экономичная схема конструируется на исходной сетке
. Таким образом, характерной областью экономичных схем этого периода является то, что сетка
не вводится, вспомогательные функции рассматриваются на верхнем слое. Составная схема конструируется на исходной сетке
. Как будет показано ниже, отказ от вспомогательной сетки
дает широкие возможности для построения различных экономичных схем и тем самым удается значительно расширить их класс. Экономичные методы, построенные на такой основе, назовем методом целых шагов. На основе метода целых шагов строятся экономичные схемы последовательного и параллельного (одновременного) перехода с нижнего слоя на верхний слой по t.

Любая разностная схема, моделирующая исходную дифференциальную краевую задачу, должна удовлетворять данным условиям устойчивости, аппроксимации на решение исходной задачи и простоты. Если эти требования для одномерной разностной схемы выполняются сравнительно легко, то при переходе к двумерной (многомерной) задаче возникают значительные трудности.

Перед вычислительной математикой встала сложная задача по­строения экономичных методов решения многомерных задач матема­тической физики. Стало невозможным разрешить эту проблему на базе однородных разностных схем, где при переходе от одного вре­менного слоя к другому одновременно удовлетворяются условия ус­тойчивости и аппроксимации. При этом, конечно, формула получает­ся более простой, но схема становится менее гибкой и имеет в своем распоряжении небольшое количество произвольных параметров, что создает основные трудности выполнения вышеописанных требова­ний. Экономичные схемы, расчленяя переход от нижнего слоя к верхнему на ряд промежуточных этапов и не требуя на каждом эта­пе обязательного выполнения свойств аппроксимации исходного уравнения и устойчивости, имеют в своем распоряжении набор па­раметров, что дает возможность выбора наиболее эффективного вы­числительного алгоритма.

Пусть имеем уравнение теплопроводности

Разрабатывая в 1955г. первые экономичные схемы переменных направления, Писмен, Рэкфорд и Дуглас имели в виду упростить решение алгебраической системы уравнений высокого порядка, со­хранить абсолютную устойчивость и приемлемую точность, тем самым удовлетворили до некоторой степени вышеописанные требования. Идея метода заключается в следующем. Уравнение (2.2) аппроксимируется разностным уравнением

(2.12)