Смекни!
smekni.com

Численное решение краевых задач для двумерного уравнения колебания (стр. 6 из 10)

Нетрудно заметить, что схема (2.12) является условно устой­чивой и симметризуется так, чтобы

и
менялись ролями от шага к шагу

(2.13)

Если в схему (2.23) счет повторяется при переходе с j–го слоя на (j+2)-й, то (j+1)-й слоя выступает в роли вспомогательного слоя.

Поэтому, введя дробные моменты времени

, схему (2.13) можно переписать в виде

(2.14)

Путем исключения вспомогательных функций в дробные моменты времени получаем эквивалентную ей однородную схему

(2.15)

Схема (2.15) и эквивалентная ей схема (2.14) аппроксимируют уравнение (2.11), как и схема

.

Безусловная устойчивость схемы (2.15) или (2.14) устанав­ливается методом Неймана. Схема (2.14) решается двумя одномерны­ми прогонками, что не только упрощает алгоритм счета, но и умень­шает объем вычислений. Из (2.13) или (2.14) видно, что методы Писмена, Рэкфорда и Дугласа предполагают обязательную аппрокси­мацию дифференциального уравнения по каждому направлению. Они представляют неявный метод переменных направлений.

Заметим, что этот метод не годится для пространства нечет­ного числа измерений. Например, при р=3 интегрирование в каждом направлении

происходит один раз неявно, а явно. Тогда возрастание ошибки в явной схеме не компенсируется убыванием ее в неявной схеме. Это подтверждается точным анали­зом устойчивости при р=3. Заметим также, что метод пере­менных направлений не годится для уравнений со смешанными про­изводными даже при р=2.

Для решения трехмерного уравнения (2.2) в работе J.Douglas, H.Rachfozd была предложена следующая схема:


(2.16)

Методом исключения функций в дробные моменты времени пока­зывается аппроксимация, а методом Неймана устанавливается устой­чивость. Из (2.16) видно, что первое уравнение дает полную ап­проксимацию уравнения (2.11)(p= 3), а следующие два уравнения дают поправку на устойчивость. Такие схемы называются схемами стабилизируюшей поправки или схемами с поправкой на устойчи­вость.

В основу работ советских авторов положен метод расщепления сложных разностных операторов на более простые. При таком под­ходе, схемы дробных шагов обязаны удовлетворять условиям аппрок­симации и устойчивости только на целом шаге.

Ниже будет показано, что это дает возможность построения гибких разностных схем для многомерных задач математической фи­зики.- Первой в этом направлении является работа А.А.Багриновского, С.К.Годунова, где был предложен метод расщепления многомерных разностных уравнений, аппроксимирующих системы ги­перболических уравнений, путем сведения их к простейшим разност­ным схемам. Такой метод Н.Н.Яненко называет методом расщепления. Идею метода покажем на примере уравнения (2.2), которое аппроксимируется явной схемой вида

(2.17)

Схема (2.17) заменяется "расщепленной" схемой

. (2.18)

Действительно, просуммировав (2.18) по

, получим схему (2.17). Однако, практически яв­ная растепленная схема (2.16) не имеет преимуществ по сравнению многомерной схемой (2.17) ни в точности, ни в объеме вычисли­тельной работы. Отсюда видно, что метод расщепления может быть эффективным только в сочетании с неявными схемами указанные выше затруднения метода переменных направлений и яв­ного метода расщепления впервые были устранены в работе Н.Н.Ясненко, где автор использует на каждом дробном шаге только неявные операторы. На каждом дробном шаге в правой части аппрок­симируется оператор
полная аппроксимация достигается только на полном шаге.

Неявный метод расщепления для уравнения (2.11) (например, при р=3) имеет вид:

(2.19)

При методе исключения величин

на промежуточных дробных шагах видно, что схема (2.19) аппроксими­рует уравнение (2.11). Безусловная устойчивость показывается ме­тодом Неймана. Схема (2.19) при
удовлетворяет принципу экстремума, поэтому решение схемы (2.29) сходится в пространст­ве С к решению дифференциального уравнения (2.11). В ра­ботах для повышения точности решения используются схе­мы с весами. Метод расщепления был применен Н.Н.Яненко для уравнений теплопроводности со смешанными производными, доказана общая теорема сходимости для системы линейных уравнений парабо­лического типа с постоянными и переменными коэффициентами.

Метод расщепления был обоснован Г.И.Марчуком для прибли­женного интегрирования нерегулярных систем в динамической мет­рологии, при решении многомерных кинетических уравнений Больцмана. Для некоторых динамических и статических за­дач теории упругости метод расщепления был сформулирован и обоснован впервые А.Н.Коноваловым. G.A. Baker, J.А. Oliphant предложили метод факторизации разностного оператора для интегрирования уравнения типа (2.11). Уравнение (2.11) (р = 2) аппроксимируется схемой вида:

(2.20)

где

- разностный оператор на старшем слое,
- результат применения разностных операторов на младших слоях.

Если ограничиться рассмотрением девятиточечных операторов, то можно выбрать оператор

так, чтобы его можно было предста­вить в виде произведения двух трехточечных операторов А и В.

Схема (2.20) возникла из трехслойной аппроксимации

уравнение (2.11), где

- некоторый девятиточечный оператор. В этом случае

. (2.21)

При этом оператор

подбирается так, чтобы аппроксимация

имела второй порядок точности и оператор

из (2.21) пред­ставлялся в виде произведения двух трехточечных операторов. Тогда уравнение (2.20) можно представить в виде двух уравнений:
каждое из которых решается алго­ритмом линейной прогонки.

Н.Н.Яненко в работе обосновал метод приближенной фак­торизации разностного оператора на примере уравнения (2.11). Рассматривается разностное уравнение

которое представляется в виде

(2.22)

Оператор

факторизуется приближенно с точностью членов порядка

(2.23)

Схема (2.22) заменяется факторизованной схемой

Водятся вспомогательные величины

с помощью неравенств

Отсюда видно, что схема (2.24) является схемой расщепления, эквивалентной схеме приближенной факторизации оператора (2.23).

Следует заметить, что схема точной факторизации оператора не применима в случае уравнения диффузии с переменными коэффи­циентами, так как при этом потребуются дополнительные итерации, в то время как метод приближенной факторизации оста­ется в силе и для уравнений о переменными, коэффициентами. Для решения уравнения (2.11) (р=з) в работе была предложена абсолютно устойчивая схема, получаемая из схемы стабилизирующей поправки применением приема предиктора-корректора (пересчет), которая имеет вид:

(2.25а)

(2.25б)

(2.25в)

(2.25г)

Уравнения (2.25а, б, в) представляют собой предиктор (схему стабилизирующей поправки), уравнение (2.25г) - коррек­тор.