Смекни!
smekni.com

Методы позиционирования и сжатия звука (стр. 25 из 47)

Кроме того, для наилучшего восприятия звука слушатель должен находится в границах sweet spot, т.е. участка пространства, в котором звук воспринимается наилучшим образом. Понятно, что чем больше площадь sweet spot, тем большая свобода у слушателя. Мы ведь не манекены и не можем долгое время сидеть, не меняя положения головы относительно пола. В настоящее время наиболее распространена конфигурация из 4 колонок (не считая сабвуфера), поэтому в дальнейшем мы будем говорить именно о такой конфигурации акустики.

Технология MultiDrive позволяет воспроизводить 3D звук с использованием API DS3D. Суть этой технологии заключается в использовании HRTF функций на всех парах колонок с применением алгоритмов Transaural Cross-talk Cancellation (TCC). Отличие TCC от стандартных алгоритмов CC заключается в том, что они обеспечивают лучшие низкочастотные характеристики звука. Кроме того, предусмотрена возможность для пользователя управлять работой TCC, настраивая звучание под себя.

Каждая пара колонок создает фронтальную и тыловую полусферу соответственно. Фронтальные и тыловые звуковые поля специальным образом смещены с целью взаимного дополнения друг друга и за счет применения специальных алгоритмов улучшает ощущения фронтального/тылового расположения источников звука и под управлением DS3D. В каждом звуковом поле применяются собственный алгоритм TCC. Исходя из этого, вокруг слушателя должно происходить плавное воспроизведение звука от динамично перемещающихся источников и эффективное расположение тыловых виртуальных источников звука. Благодаря большому углу перекрытия результирующее место с наилучшим восприятием звука (sweet spot) покрывает область с гораздо большей площадью, по сравнению, например, с двухколоночной конфигурацией.

Минусом использования HRTF + TCC на всех парах колонок является то, что для расчета TCC требуется масса вычислительных ресурсов и необходимость довольно точного позиционирования тыловых колонок относительно фронтальных. В противном случае никакого толка от HRTF + TCC на четырех колонках не будет.

Стоит добавить, что MultiDrive рассчитана на совместное использование с алгоритмами MacroFX и ZoomFX от Sensaura.

MacroFX

Мы уже говорили выше, что с помощью HRTF и TCC можно воспроизвести качественный 3D звук. Но есть один нюанс. Обычно большинство измерений HRTF производятся в так называемом дальнем поле (far field, на дистации более 1 метра до источника звука), т.к. это существенно упрощает вычисления да и в большинстве игр воспроизводится звук от источников, находящихся на расстоянии от 1 метра и больше от слушателя. При этом, если источник звука находится на расстоянии до 1 метра от слушателя, т.е. в ближнем поле (near field), тогда эффективность использования HRTF снижается. Дело в том, что для создания звучания от удаленного источника звука достаточно добавить к основному звуковому сигналу реверберацию. Иногда можно обойтись и без реверберации, сократив высокочастотные компоненты в основном звуковом сигнале. Если источник звука находится в ближнем поле, подобные решения не применимы. Но необходимость в воспроизведении звука от источников в ближнем боле нередки. Например, в игре типа RPG может возникнуть необходимость нашептать подсказку непосредственно в ухо игроку, а в FPS игре часто необходимо воспроизвести звук пролетающих рядом с головой игрока пуль. Все эти эффекты нельзя вопроизвести, если HRTF измерялись на дистанции от одного метра и более, т.е. в дальнем поле. Тем не менее, измерить HRTF для всей области ближнего поля очень сложно, а использование дискретных наборов HRTF, сделанных, например, для дистанций 1 м, 0.9 м, 0.9 м и т.д. не позволит сделать звук от движущегося объекта естественно плавным, он будет скачкообразным. Решением проблемы является использование единого набора универсальных HRTF для ближнего поля с использованием дополнительного алгоритма.

Этот алгоритм был создан Sensaura и получил имя MacroFX. В результате работы MacroFX можно создать ощущение, что источник звука расположен очень близко к слушателю, так, будто источник звука перемещается от колонок вплотную к голове слушателя и вплоть до шепота внутри уха слушателя. Достигается такой эффект за счет очень точного моделирования распространения звуковой энергии в трехмерном пространстве вокруг головы слушателя, преобразования этих данных в тесном взаимодействии с HRTF функциями. Особое внимание при моделировании уделяется управлению уровнями громкости и модифицированной системе расчета задержек по времени при восприятии ушами человека звуковых волн от одного источника звука (ITD, Interaural Time Delay). Для примера, если источник звука находится примерно посередине между ушами слушателя, то разница по времени при достижении звуковой волны обоих ушей будет минимальна, а вот если источник звука сильно смещен вправо, эта разница будет существенной. Только MacroFX принимает такую разницу во внимание при расчете акустической модели. Все эти вычисления происходят до начала работы алгоритмов TCC, но сразу после расчета HRTF для всех источников звука.

В DS3D предусмотрено три зоны (две из них показаны на рисунке слева). Зона 0 в ней располагаются сильно удаленные источники звука, которые имеют постоянную интенсивность, не зависящую от расстояния. Источники в этой зоне могут не приниматься во внимание, т.е. слушатель их не слышит, либо они используются для формирования реверберации. Зона 1 это т.н. дальнее поле, в ней располагаются источники на расстоянии более 1 метра от слушателя и до определяемой разработчиком границы. В этой зоне интенсивность источников звука обратно пропорциональна расстоянию до слушателя. В зоне 2 (ближнее поле, расстояние до 1 м от слушателя) все источники звука имеют постоянную интенсивность. Это сделано для того, чтобы уровень громкости не превысил допустимого барьера и с целью ограничения нагрузки на шину данных.

MacroFX предусматривает 6 зон, где зона 0 (это дистанция удаления) и зона 1 (дальнее поле) будут работать точно так же, как работает дистанционная модель DS3D. Другие 4 зоны это и есть near field (ближнее поле) в стиле MacroFX, покрывающие дистанцию рядом с головой слушателя, левое ухо, правое ухо и пространство внутри головы слушателя. При этом здесь также вводятся ограничение на дистанцию, чтобы сократить накладные расходы при вычислениях. Поэтому в зоне 2 используется стандартный алгоритм Near-Field FX, а в зонах 3, 4 и 5, которые начинают работать с расстояния в 20 см, используется как таковой алгоритм MacroFX. Эти три зоны рассчитаны на источники звука, расположенные очень близко к ушам пользователя (левому или правому). Если источник звука должен находится как бы в голове пользователя (например, переговоры авиадиспетчеров в авиасимуляторе), то для этого используется зона 5.

Алгоритм MacroFX полностью прозрачен для интерфейсов и игр. Это означает, что если у вас установлена звуковая карта, в драйвер которой встроена поддержка MacroFX, то вы услышите работу этой технологии во всех играх, где источники звука попадают в ближнее поле. Разумеется, в зависимости от конкретной игры эффект будет воспроизводиться лучше или хуже. Зато в игре, созданной с учетом возможности использования MacroFX можно добиться очень впечатляющих эффектов, например, писк комара прямо в ухе, свист ветра в ушах при езде на велосипеде и т.д.

ZoomFX

Современные системы воспроизведения позиционируемого 3D звука используют HRTF функции для создания виртуальных источников звука, являющихся точечными. В реальной жизни звук зачастую исходит от больших по размеру источников звука или от композитных источников, объединяющих собой сразу несколько источников звука. Большие по размерам и композитные источники звука позволяют использовать более реалистичные звуковые эффекты, по сравнению с возможностями точечных источников звука. Так, точечный источник звука хорошо применим при моделировании звука от большого объекта удаленного на большое расстояние (например, движущийся поезд). Но в реальной жизни, как только поезд приближается к слушателю, он перестает быть точечным источником звука. В реальной жизни, когда поезд проезжает рядом с нами, мы слышим стук колес, скрип рессор, звук от буферов и т.д. Тем не менее, при моделировании источника звука типа поезд с использованием интерфейса DS3D поезд представляется, как точечный источник звука. В результате звук получается ненатуральным, т.е. мы слышим звук скорее от маленького поезда, нежели от огромного состава громыхающего рядом. Технология ZoomFX решает эту проблему, за счет введения такого параметра источника звука, как размер и сложность. Если вспомнить про наш поезд, то он будет представлен в виде собрания нескольких источников звука, типа шума колес, шума двигателя, шума сцепок вагонов и т.д. Для представления большого по размеру объекта используется набор из нескольких точечных источников звука. Для того чтобы мы слышали отдельные составляющие композитного источника звука используется метод динамической декорреляции (Dynamic Decorrelation), позволяющий выделить отдельные источники, составляющие композитный источник звука.

На рисунке показано, как источник звука типа вертолет представляется в виде нескольких точеных источников. Когда вертолет далеко от нас, все четыре точечных источника формируют единый звуковой сигнал в виде гула. Этот основной звук можно снабдить дополнительными звуковыми сигналами в виде реверберации, чтобы пользователю было проще определить источник звука. Например, что вертолет летит на расстоянии 50 метров на фоне высотного здания из стеклобетона. Как только вертолет приблизится на достаточное расстояние к нам, так, что мы сможем легко его рассмотреть вполне логично ожидать, что мы сможем выделить звук от лопастей (как они рассекают воздух), звук от турбины и звук от хвостового винта. Именно для таких целей и предназначен ZoomFX. На практике все работает следующим образом. В качестве носителя звука вертолета может выступать обычный монофонический wav файл. Затем, когда возникает необходимость выделить составляющие источники звука, начинает работать динамический декоррелятор, который выделяет несколько вторичных звуков, которые затем подвергаются обработке HRTF фильтрами, затем происходит сложение соответствующих каналов (правые с правыми, левы с левыми и т.д.), затем сигнал обрабатывается алгоритмами TCC и воспроизводится через акустическую систему. К слову, возможность создания нескольких виртуальных источников звука с помощью ZoomFX может быть использована, например, для воспроизведения в наушниках многоканального звука типа Dolby Digital.