Смекни!
smekni.com

Механизмы компрессора (стр. 1 из 10)

КУРСОВОЙ ПРОЕКТ

на тему: «Механизмы компрессора»

1. Структурный анализ механизмов

1.1 Структурный анализ рычажного механизма

Рисунок 1.1. Подвижные звенья механизма

1-кривошип

2-шатун

3-ползун

4-шатун

5-ползун

Кинематические пары.

О (0-1),вр.,5 кл.

А (1-4),вр.,5 кл.

А'(1-2),вр.,5 кл.

В (2-3),вр.,5 кл.

В'(3-0),пост.,5 кл.

С (4-5),вр.,5 кл.

С'(5-0),пост.,5 кл.

Найдём число степеней свободы.

Запишем формулу Чебышева.

W=3∙n-2∙P5-P4 (1.1)

Где, W-число степеней свободы,

n-число подвижных звеньев,

P4 - число пар 4-го класса,

P5 - число пар 5-го класса.

W=3∙5-2∙7=1

Число степеней свободы рычажного механизма равно 1.

Разобьём механизм на группы Асура и рассмотрим каждую группу в отдельности.

Группа 2-3 (Рисунок 1.2)

A'(1-2)-внешняя

B'(3-0)-внешняя

B (2-3)-внутренняя

W=3∙2-2∙3=0

II кл. 2 вид Рисунок 1.2

Группа 4-5 (Рисунок 1.3)

А (1-4)-внешняя

С' (5-0)-внешняя

C (4-5)-внутренняя

W=3∙2-2∙3=0

II кл. 2 вид

O (0-1)

W=3-2=1

Рисунок 1.4

Составим структурную формулу:

Механизм является механизмом 2кл.,2в..

1.2 Структурный анализ зубчатого механизма

Рисунок 1.5. Подвижные звенья механизма

1 – центральное колесо

2 – сателлит

3 – зубчатое колесо

H – водило

4 – зубчатое колесо

5 – зубчатое колесо

Кинематические пары.

(1-0),вр.,5 кл.

(5-0),вр.,5 кл.

(2-H),вр.,5 кл.

(4-0),вр.,5 кл.

(1-2),вр.,4 кл.

(2-3),вр.,4 кл.

(4-5),вр.,4 кл.

Найдём число степеней свободы.

Исходя из формулы Чебышева имеем,

W=3∙4-2∙4-3=1

Число степеней свободы зубчатого механизма равно 1, следовательно, данный механизм является планетарным.

1.3 Структурный анализ кулачкового механизма

Рисунок 1.6. Подвижные звенья механизма

1-кулачок

2-ролик

3-коромысло

Кинематические пары.

О (1-0),вр.,5 кл.

А (3-0),вр.,5 кл.

В (2-3),вр.,5 кл.

С (1-2),пост.,4 кл.

Найдём число степеней свободы.

W=3∙n-2∙P5-P4

W=3∙3-2∙3-1=2

Число степеней свободы равно 2.

Так как W≠1, то присутствует лишнее звено - ролик.


2. Динамический анализ рычажного механизма

2.1 Определение скоростей

Для заданной схемы механизма строим 12 положений.

Определяем масштабный коэффициент построения механизма:

(2.1)

где,

- масштабный коэффициент,

- длина звена,

- длина звена на чертеже,

Запишем длинны звеньев механизма на чертеже

Приступаем к построению повёрнутых планов скоростей для каждого положения. Рассмотрим пример построения для положения №5:

У кривошипа определяем скорость точки А

(2.2)

где,

- длина звена,

- угловая скорость кривошипа,

Для построения вектора скорости точки А определяем масштабный коэффициент

(2.3)

где,

- скорость точки А,

- вектор скорости точки А,

- полюс, выбираемый произвольно

Для определения скорости точки B запишем систему уравнений:

(2.4)

- из задания

Для определения скорости центра масс 2-го звена S2 воспользуемся соотношением:

(2.5)

где,

,
- расстояния между соответствующими точками на механизме, м

,
- длинны векторов скоростей на плане, мм

мм

Соединив, точку

и π получим скорость центра масс второго звена.

Для определения скорости точки C запишем систему уравнениё:

(2.6)

- из задания

Для определения скорости центра масс 4-го звена S4 воспользуемся соотношением:

(2.7)

где,

,
- расстояния между соответствующими точками на механизме, м

,
- длинны векторов скоростей на плане, мм

мм

Соединив, точку

и π получим скорость центра масс второго звена.

Определим значения угловых скоростей звеньев.

Направление

определяем, перенеся вектор ab в точку S2 – второе звено вращается против часовой стрелки. Аналогично получим, что
направлена по часовой стрелке.

Скорости точек остальных положений определяются аналогичным образом. Все значения сводим в таблицу(2.1).

Таблица 2.1 – Значения линейных и угловых скоростей

Nположения VB=VS3,
VS2,
VС=VS5,
VS4,
VBA= VCA,
=
,
1 0 5,58 0 5,58 8,37 33,48
2 5,36 6,66 3,01 6,14 7,34 29,37
3 8,46 8,14 6,04 7,39 4,36 17,42
4 8,37 8,37 8,37 8,37 0 0
5 6,04 7,39 8,46 8,14 4,36 17,42
6 3,01 6,14 5,36 6,66 7,34 29,37
7 0 5,58 0 5,58 8,37 33,48
8 3,01 6,14 5,36 6,66 7,34 29,37
9 6,04 7,39 8,46 8,14 4,36 17,42
10 8,37 8,37 8,37 8,37 0 0
11 8,46 8,14 6,04 7,39 4,36 17,42
12 5,36 6,66 3,01 6,14 7,34 29,37

2.2 Определение приведённого момента инерции звеньев

Приведённый момент инерции определяется по формуле: