Смекни!
smekni.com

Разработка технологии выплавки низко- и среднелегированных сталей с пониженным содержанием азота (стр. 2 из 18)

Заключение

Список использованных источников


Введение

Настоящий период развития металлургии характеризуется возросшими требованиями новых отраслей техники к качеству многих марок стали. В результате увеличились масштабы производства стали и сплавов, содержащих ничтожно малое количество газов, неметаллических включений и других нежелательных примесей; разработаны новые способы обработки металла как в самом агрегате, так и вне его. Возможность получения стали с гарантированно низким содержанием вредных примесей при минимальном развитии ликвации обеспечивает возможность роста промышленного производства без существенного увеличения количества выплавляемой стали.

В настоящее время на ряде металлургических предприятий в 100 тонных электропечах выплавляют сталь с массовой долей азота не более 0,008%. Обеспечение низкого содержания азота в готовой стали обусловлено необходимостью повышения качества выпускаемой продукции и завоеванием рынка сбыта металлопроката.

Повышение качества электростали актуально и для ОАО «Уральская Сталь» с целью завоевания более прочных позиций на рынке низколегированных сталей.

В настоящей работе проведён анализ металловедческих исследований с целью выявления влияния азота на свойства стали и на основе физико-химических исследований, использования последних достижений металлургической науки предложена технология комплексного воздействия на металлический расплав в электросталеплавильных агрегатах с целью получения в стали низкого содержания [N] менее 0,008 % в условиях ЭСПЦ ОАО «Уральская Cталь»

Возможность успешного выполнения проекта базируется на достаточно плодотворных наработках, сделанных в последние 10-15 лет и широко представленных в многочисленных публикациях в отечественных и зарубежных периодических изданиях, а также трудах международных конференций.


1 Аналитический обзор литературы

1.1 Растворимость азота в стали

В любой стали в некоторых количествах содержатся элементы в обычных условиях являющиеся газами. К ним в первую очередь относятся кислород, азот и водород, в значительной степени влияющие на качество стали.

Процесс, в результате которого газы оказываются в металле в атомарном, ионном состоянии или в виде химических соединений, в металлургической практике обычно называют процессом растворения газов в металле. Условно в этом процессе можно выделить несколько стадий:

1) массоперенос газа к поверхности металла;

2) адсорбция газа на поверхности металла;

3) переход через границу газ-металл;

4) диффузия газа в тонком перемешиваемом (диффузионном) слое жидкости;

5) массоперенос в толщу металла.

Лимитирующей стадией процесса растворения газов в металле, как правило, является либо внешняя диффузия (подвод газа), либо внутренняя диффузия (массоперенос в металле).

Обычно под растворимостью газа принимают его количество, перешедшее в раствор в металле при нормальном парциальном давлении газа.

В зависимости от суммарного (результирующего) изменения энтальпии ∆Нs растворимость газов повышается или понижается с повышением температуры металла. В случае растворения в чистом железе двухатомных газов установлена четкая связь между парциальным давлением р этих газов в атмосфере над расплавом и растворимостью газа в металле:


S=K√p , (1)

где S-растворимость газа в металле;

К-константа равновесия;

р-парциальное давление газа в атмосфере над расплавом.

Это соотношение называют законом квадратного корня или законом Сивертса.

На основании данных об изменении растворимости азота в железе (рисунок 1) можно сделать следующие выводы:

1) растворимость азота в α- и β-Fe возрастает при повышении температуры;

2) растворимость азота в γ-Fe при повышении температуры снижается, что объясняется снижением прочности нитрида Fe4N;

3) растворимость азота при переходе из жидкого состояния в твердое и из одного аллотропического состояния в другое резко изменяется;

4) растворимость азота в жидком железе с повышением температуры возрастает.

Рисунок 1 - Растворимость азота в жидком железе

Для процесса растворения азота в жидком железе характерны, по крайней мере, две стадии:

1) диссоциация молекулярного азота на атомы N2 → 2N — сопровождается поглощением тепла;

2) растворение атомарного азота N → [N] — сопровождается выделением тепла.

Поскольку ∆Hдис> ∆Hраст ,суммарный процесс протекает с поглощением тепла. При повышенных температурах наблюдается увеличение содержания азота в металле (например, при продувке техническим кислородом с повышенным содержанием азота, в высокотемпературной зоне дуги при электродуговом обогреве и т. п.). При 1600°С и рN2=0,1МПа растворимость азота в жидком железе близка к 0,044 %. При этих условиях азот образует с железом раствор, близкий к идеальному.

Образование нитридов железа (Fe4N, Fe2N) происходит в процессе охлаждения закристаллизовавшегося металла (в основном в области γ-Fe) По влиянию на растворимость азота в жидком железе элементы-примеси металла можно разделить на три группы.

1. Образующие прочные нитриды (ванадий, ниобий, лантан, церий, титан, алюминий). Эти элементы повышают растворимость азота в железе. Такие примеси, как хром, марганец, молибден, обычно нитридов не образуют, но они характеризуются большим химическим сродством к азоту, чем к железу, поэтому также заметно увеличивают растворимость азота.

2. Не образующие нитридов (углерод, никель, медь, фосфор) или образующие с азотом соединения, менее прочные, чем с железом (кремний). Эти элементы заметно снижают растворимость азота в железе.

3. Кислород и сера, мало влияющие на растворимость азота в железе. Являясь сильно поверхностно-активными, они оказывают существенное влияние на кинетику поглощения азота [1].

Влияние содержания примесей железа на растворимость в нем азота видно из рисунка 2. При охлаждении стали, содержащей азот, нежелательным является скачкообразное изменение растворимости. При быстром охлаждении азот не успевает выделиться, и раствор становится пересыщенным. Процесс выделения избыточного азота протекает во время эксплуатации готового изделия и во многих случаях приводит к ухудшению свойств стали (старение и связанное с этим скачкообразное повышение прочности и понижение пластических свойств).

Рисунок 2 - Растворимость азота в сплавах железо-легирующий элемент R при нормальном давлении и температуре 1600 °С

Размеры частиц азота в металле значительно больше, чем водорода, поэтому скорости диффузии азота в железе более низкие. Коэффициент диффузии водорода в жидком железе Dн = (8,0 + 9,0) ∙ 10-3 см2/с, тогда как для азота DN =3,77 ∙10-5 см2/с, т. е. ниже на два порядка, поэтому при снижении давления (обработка вакуумом) водород удаляется из металла с большей интенсивностью, чем азот [2].

Наличие в железе поверхностно-активных примесей заметно влияет на процессы растворения (и соответственно выделения) азота. Так, например, кислород является поверхностно-активной примесью. В результате присутствия в расплаве кислорода образуется богатый кислородом поверхностный слой, приводящий к снижению скорости перехода азота через границу газ — жидкий металл, поэтому при малой степени раскисленности и небольшом перегреве металла над ликвидусом можно продувать сталь азотом без опасения получить чрезмерно высокое его содержание. Иное развитие у процесса, когда металл хорошо раскислен либо когда в агрегате или в какой-то локальной зоне (например, в зоне электрических дуг или в зоне подачи технического кислорода в ванну) имеют место заметные перегревы металла [3].

1.2 Влияние азота на свойства стали

При отсутствии в стали элементов, образующих нитриды при высокой температуре (Ti, Al, Zr, V), после образования α-Fe начинается выделение азота из раствора в виде включений нитридов железа (Fe2N, Fe4N, Fe8N). Это выделение может продолжаться длительное время после охлаждения и, так как оно происходит в основном при низкой температуре, выделившиеся включения дисперсны (размером порядка 10-3 мкм). Дисперсные включения нитридов железа располагаются по кристаллографическим плоскостям и, препятствуя перемещению дислокаций, вызывают охрупчивание металла. Результатом этого является снижение ударной вязкости и относительного сужения, при одновременном повышении твердости и прочности.

Как и выделение нитридов железа, снижение ударной вязкости усиливается при длительном хранении или эксплуатации стальных изделий, достигая минимума через 20—40 суток, поэтому описываемое явление получило название старения. Старение может быть ускорено искусственно, если закаленное железо или сталь подвергнуть холодной пластической деформации, увеличивающей скорость распада твердого раствора и выделения нитридов железа. В результате старения ударная вязкость может уменьшиться в четыре—шесть раз, поэтому склонность к старению является пороком стали. Она характерна для малоуглеродистой стали, не раскисленной алюминием или ванадием [1].

Влияние азота на механические свойства стали показано на рисунке 3.

Рисунок 3 – Влияние азота на механические свойства стали

Присадка в сталь элементов, связывающих азот в нитриды при высоких температурах, устраняет склонность стали к старению. Такими элементами являются следующие: