Смекни!
smekni.com

Площади многоугольников (стр. 11 из 18)

и
,
и
, …,
и
.

Согласно доказанному в первой части этой теоремы, получим пропорции:

…;
.

Но из подобия многоугольников следует:

.

И поэтому

.

Значит,

,

откуда

,

Следствие. Площади правильных одноимённых многоугольников относятся как квадраты сторон, или как квадраты радиусов апофем.

1.8Фигуры с наибольшей площадью

1.8.1 Трапеция или прямоугольник

Рассмотрение этого пункта начнём с решения задачи.

Задача. В роковой в своей жизни день Пахом прошёл 40 вёрст, идя по сторонам трапеции площадью 78 квадратных вёрст. Его первоначальным намерением было идти по сторонам прямоугольника, трапеция же получилась случайно, в результате плохого расчёта. Интересно определить: выгадал он или прогадал от того, что участок его оказался не прямоугольником, а трапецией? В каком случае должен он был получить большую площадь земли?

Решение. Прямоугольников с обводом в 40 вёрст может быть очень много, и каждый имеет другую площадь.

Вот ряд примеров:

14 × 6 = 84 кв. вёрст

13 × 7 = 91 кв. вёрст

12 × 8 = 96 кв. вёрст

11 × 9 = 99 кв. вёрст

Мы видим, что у всех этих фигур при одном и том же периметре в 40 вёрст площадь больше, чем у нашей трапеции. Однако возможны и такие прямоугольники с периметром в 40 вёрст, площадь которых меньше, чем у трапеции:

18 × 2 = 36 кв. вёрст

19 × 1 = 19 кв. вёрст

19,5 × 0,5 = 9,75 кв. вёрст.

Следовательно, на вопрос задачи нельзя дать определённого ответа. Есть прямоугольники с большей площадью, чем трапеция, но есть и с меньшей, при одном и том же обводе. Зато можно дать вполне определённый ответ на вопрос: какая из всех прямоугольных фигур с заданным периметром заключает самую большую площадь? Сравнивая наши прямоугольники, замечаем, что чем меньше разница в длине сторон, тем площадь прямоугольника больше. Естественно заключить, что когда этой разницы не будет вовсе, т. е. когда прямоугольник превратится в квадрат, площадь фигуры достигнет наибольшей величины. Она будет равна тогда 10 × 10 = 100 кв. вёрст. Легко видеть, что этот квадрат действительно превосходит по площади любой прямоугольник одинакового с ним периметра. Пахому следовало идти по сторонам квадрата, чтобы получить участок наибольшей площади, - на 22 квадратной версты больше, чем он успел охватить.


1.8.2 Замечательное свойство квадрата

Замечательное свойство квадрата – заключать в своих границах наибольшую площадь по сравнению со всеми другими прямоугольниками того же периметра. Приведём строгое доказательство.

Обозначим периметр прямоугольной фигуры через Р. Если взять квадрат с таким периметром, то каждая сторона его должна равняться

. Докажем, что укорачивая одну его сторону на какую-нибудь величину b при таком же удлинении смежной стороны, мы получим прямоугольник одинакового с ним периметра, но меньшей площади. Другими словами, докажем, что площадь
квадрата больше площади
прямоугольника:

.

Так как правая сторона этого неравенства равна

, то всё выражение принимает вид:
или
.

Но последнее неравенство очевидно: квадрат всякого количества, положительного или отрицательного, больше нуля. Следовательно, справедливо и первоначальное равенство, которое привело нас к этому.

Итак, квадрат имеет наибольшую площадь из всех прямоугольников с таким же периметром.

Отсюда следует и то, что из всех прямоугольных фигур с одинаковыми площадями квадрат имеет наименьший периметр. В этом можно убедиться следующим рассуждением. Допустим, что это не верно и что существует такой прямоугольник А, который при равной с квадратом В площади имеет периметр меньший, чем у него. Тогда, начертив квадрат С того же периметра, как у прямоугольника А, получим квадрат имеющий большую площадь, чем у А, и, следовательно, большую, чем у квадрата В. В итоге получили, что квадрат С имеет периметр меньший, чем квадрат В, а площадь большую, чем он. Это, очевидно, невозможно: раз сторона квадрата С меньше, чем сторона квадрата В, то и площадь должна быть меньше. Значит нельзя было допустить существование прямоугольника А, который при одинаковой площади имеет периметр меньший, чем у квадрата. Другими словами, из всех прямоугольников с одинаковой площадью наименьший периметр имеет квадрат.

Знакомство с этими свойствами квадрата помогло Пахому правильно рассчитать свои силы и получить прямоугольный участок наибольшей площади. Зная, что он может пройти в день без напряжения, например, 36 вёрст, он пошёл бы по границе квадрата со стороной 9 вёрст и к вечеру был бы обладателем участка в 81 квадратную версту, - на 3 квадратные версты больше, чем он получил со смертельным напряжением сил. И, наоборот, если бы он наперёд ограничился какой-нибудь определённой площадью прямоугольного участка, например, в 36 квадратных вёрст, то мог бы достичь результата с наименьшей затратой сил, идя по границе квадрата, сторона которого - 6 вёрст.

1.8.3 Участки другой формы

Но, может быть, Пахому ещё выгоднее было бы выкроить себе участок вовсе не прямоугольной формы, а какой-нибудь другой – четырёхугольной, треугольной, пятиугольной и т. д.

Познакомимся со следующими утверждениями, которые и отвечают на поставленный вопрос.

Во-первых, из всех четырёхугольников с одинаковым периметром наибольшую площадь имеет квадрат. Поэтому, желая иметь четырёхугольный участок, Пахом никакими ухищрениями не мог бы овладеть более чем 100 квадратными вёрстами (считал, что максимальный дневной пробег его – 40 вёрст).

Во-вторых, квадрат имеет большую площадь, чем всякий треугольник равного периметра. Равносторонний треугольник такого же периметра имеет сторону

вёрстам, а площадь (по формуле
, где S - площадь, а – сторона)
кв. вёрст, т. е. меньше даже, чем у той трапеции, которую Пахом обошёл. Дальше будет доказано, что из всех треугольников с равными периметрами равносторонний обладает наибольшей площадью. Значит, если этот наибольший треугольник имеет площадь, меньшую площади квадрата, то все прочие треугольники того же периметра по площади меньше, чем квадрат).

Но если будем сравнивать площадь квадрата с площадью пятиугольника, шестиугольника и т. д. равного периметра, то здесь неравенство его прекращается: правильный пятиугольник обладает наибольшей площадью, правильный шестиугольник – ещё большей, и т. д. Легко убедиться в этом на примере правильного шестиугольника. При периметре в 40 вёрст его сторона

, площадь (по формуле
) равна

кв. вёрст.

Избери Пахом для своего участка форму правильного шестиугольника, он при том же напряжении сил овладел бы площадью на 115 -78, т. е. на 37 квадратных вёрст больше, чем в действительности, и на 15 квадратных вёрст больше, чем дал бы ему квадратный участок.

1.8.4 Треугольник с наибольшей площадью

Мы уже заметили раньше, что из всех треугольников с равными периметрами равносторонний обладает наибольшей площадью. Докажем это.

Площадь S треугольника со сторонами а, b, с и периметром

выражается так:

,

откуда

Площадь S треугольника будет наибольшей тогда же, когда станет наибольшей величиной и её квадрат

, или выражение
, где р, полупериметр, есть, согласно условию, величина неизменная. Но так как обе части равенства получают наибольшее значение одновременно, то вопрос сводится к тому, при каком условии произведение
становится наибольшим. Заметив, что сумма этих трёх множителей есть величина постоянная,