Смекни!
smekni.com

Экология и экономика природопользования (стр. 6 из 113)

Как организм не может быть понят вне единства с неживой природой, так и неживая природа в пределах биосферы не может быть понята достаточно полно без учета воздействия на нее со стороны организмов. По сути дела это общее методологическое требование системного подхода: часть не может быть понята в ее структурном и функциональном аспектах без соотнесения с другими частями целостной системы. Если живая и неживая природа представляют собой части целостной системы, то они могут быть поняты только путем соотнесения друг с другом и с целым, частями которого они являются.

Системный подход к изучению биосферы позволяет глубже понять многие процессы на земной поверхности, не поддававшиеся ранее научному объяснению. Особенно это касается проблем распределения вещества по поверхности Земли и проблем источников энергии, необходимой для движения вещества. Удалось, например, понять причины возникновения месторождений многих видов полезных ископаемых и разработать важные методы их поиска по биологическим признакам (работы А.Е. Ферсмана, В.В. Ковальского). Академик А.П. Виноградов положил начало теории биогеохимических провинций, которая оказалась очень важной не только для совершенствования этих методов, но и для понимания причин эндемий, т.е. заболеваний, возникающих из-за недостатка или избытка некоторых микроэлементов в окружающей среде11.

Системный подход позволил верно оценить исключительную роль живого вещества как источника энергии процессов не только в живой, но и в значительной части неживой природы. Особенно велика в этом отношении роль зеленых растений — единственных автотрофов на нашей планете. Они перехватывают энергию солнечного луча и трансформируют ее в энергию связи органических соединений. В этой форме энергия Солнца становится доступной всем остальным организмам, передаваясь по цепям питания и размножения. Ежегодно деятельностью всех фотосинтетиков нашей планеты связывается энергия в количестве 1018 Дж. Эта величина, вполне сопоставима с кинетической энергией геологических процессов на поверхности Земли, которая равна 1024 Дж. Но энергетическая функция живого вещества не сводится только к количественному аспекту. Главное состоит в том, что деятельностью растений в процессе питания высвобождается кислород, за счет которого идут все реакции окисления. По мнению В. И. Вернадского, химизм нашей планеты обусловлен в основном организмами. С появлением жизни реакции окисления на Земле пошли во много крат быстрее, чем в абиотических условиях, и в этом состоит особое значение энергетической функции живого вещества. В.И. Вернадский связал учение о биосфере с концепцией подвижности земных слоев, продолжив тем самым в геологической науке идею развития. Он предположил, что в геологически длительное время верхние слои биосферы, обогащенные энергией живого вещества, постепенно опускаются в магматическую область и там расплавляются под воздействием высокой температуры и давления, отдавая избыточную энергию земным недрам. Впоследствии, эта гипотеза получила экспериментальное подтверждение в трудах В.И.Лебедева и Н.В.Белова12.

Учение о биосфере дало толчок дальнейшему развитию биологии и, в частности, такому ее разделу, как экология, поскольку окружающая организмы среда предстала в более значительном и динамичном для живого плане, чем раньше. Возросло внимание биологов к надорганизменным уровням организации живого: организм стали рассматривать не как самодовлеющую величину, а как часть более сложного целого — популяции, биоценоза и биосферы в целом. Можно вполне согласиться с проф. К.М. Завадским, который считал важнейшей чертой нового способа мышления в биологии «отказ от признания организма единственно реальной и первичной формой организации живого»13. Здесь же автор отмечает, что «идею первичности не одной формы существования жизни, а сразу нескольких впервые обосновал В.И.Вернадский». У него эта идея органично вытекала из его концепции биосферы, поскольку, как справедливо полагал ученый, одиночный организм и даже вид не «мог бы выполнить все геохимические функции жизни, которые существуют в биосфере изначала»14. Плодотворность системного подхода в данном случае очевидна, и не случайно, что сейчас, когда системный подход становится нормой исследований в биологии, идеи В.И. Вернадского переживают пору возрождения и ведут ученых к ценным результатам.

Если совсем недавно биоценология была второстепенным разделом биологии, то теперь она становится одним из наиболее важных ее участков, имеющих большое практическое значение. С позиций биоценологии вся биосфера представляет собой систему взаимосвязанных обменными процессами биогеоценозов, которые являются очень важными звеньями реализации биологического круговорота вещества и энергии в его взаимодействии с геологическим круговоротом.

Взаимосвязь различных видов организмов в биогеоценозах такова, что продукты жизнедеятельности одних видов, вредные для них самих, выступают условием жизнедеятельности других. Складывается, таким образом, непрерывная последовательность цепей питания, каждое из звеньев которых достаточно необходимо и незаменимо полностью. В обобщенном виде эти звенья можно представить как цепочку, идущую от автотрофов через гетеротрофы к сапрофагам, которые, разлагая органическое вещество, обеспечивают возврат химических элементов обратно в неживую природу. Следовательно, в биогеоценозах обеспечивается цикличность обменных процессов, их замкнутость. Однако эта цикличность относительна, так как в неживой природе идет непрерывный процесс совершенствования видов в ходе борьбы за существование.

Каждый органический вид стремится увеличить свою биогеохимическую энергию. Выживают и развиваются те виды, которые более преуспевают в этом процессе. В итоге каждый развивающийся вид способствует общему процессу аккумуляции вещества и энергии в биосфере. В силу обратного воздействия следствия на причину повышение вещественно-энергетического уровня биосферы сообщает органическому миру новый импульс развития и т.д. В целом образуется интегральный процесс восходящего развития всей живой природы.

В свете учения о биосфере все ее компоненты предстают как закономерно возникшие и необходимым образом связанные друг с другом обменными процессами. Каждый компонент играет вполне определенную и незаменимую для данного состояния роль в поддержании целостного и упорядоченного характера биосферы как системы. Сколько-нибудь существенное изменение любого из компонентов рано или поздно отражается на остальных и обусловливает соответственное их изменение. За счет этого обеспечиваются саморегуляция биосферы и закономерный характер ее изменений во времени.

Принципы саморегуляции и целостности биосферы представляют для нас особый интерес. Поэтому мы остановимся на их рассмотрении подробнее.

ПОДВЕДЕМ ИТОГИ:

• Концепция биосферы позволила свести все многообразие живых форм на планете к системному единству во взаимодействии живой и неживой природы. При таком подходе лучше стала заметна планетарная роль живых организмов, деятельностью которых совершается качественное преобразование земной поверхности в направлении возникновения и возрастания свойств ее жизнепригодности (появление и поддержание свободного кислорода в атмосфере, формирование свойства плодородия почвы и наружных вод планеты, формирование озонового экрана в верхних слоях атмосферы и т.д.)

• Биогеохимический метод изучения явлений земной поверхности на атомарном уровне позволил проследить роль живой материи в движении вещества и передаче энергии по поверхности планеты и прийти к выводу о ведущей роли организмов в преобразовании всей совокупности геологических факторов наружной оболочки Земли.

• Таким образом, противоречие между живой и неживой природой было выделено В.И. Вернадским как основное в развитии земной поверхности.

ПОВТОРИМ:

1. Что такое биосфера?

2. Как представлено живое вещество на планете по сравнению с неживой природой?

3. Что означает тезис о геологической роли живого вещества на планете?

4. Каково основное противоречие развития биосферы?

1.2. Основные закономерности развития

биосферы

Для уяснения специфики биосферы как саморазвивающейся системы необходимо прежде всего рассмотреть основные ее компоненты15, показать, что они — результат прогрессивной дифференциации вещества в ходе саморазвития биосферы, наконец, что взаимосвязь этих частей характеризуется специфическими закономерностями, обеспечивающими саморегулирование и целостность системы.

Такими частями являются: наружный слой литосферы, гидросфера, атмосфера, космические излучения в зоне поверхности Земли, живое вещество планеты и почва. Каждая из них в свою очередь состоит из частей меньшего порядка. Например, живое вещество состоит из тесно связанных между собой больших групп организмов: автотрофов, гетеротрофов и хемотрофов.

Исключительная разнородность частей биосферы и придает ей как целому особое своеобразие. Выделяются следующие виды неоднородности биосферы: агрегатная, пространственная, энергетическая, геохимическая, зональная, качественная. В.И. Вернадский придавал большое значение свойству неоднородности биосферы, характеризовал его как своеобразную диссимметрию, мозаичность и видел в этом важнейший источник ее развития16.

Агрегатная неоднородность биосферы состоит в том, что она представляет собой, пожалуй, единственный природный комплекс, в котором тесно взаимодействуют, оставаясь качественно обособленными, три агрегатных состояния — твердое, жидкое и газообразное. При постоянном, но неравномерном притоке космических излучений, и особенно энергии Солнца, в условиях электромагнитного поля Земли и сферической земной поверхности взаимодействие различных агрегатных состояний вещества приобретает крайне противоречивый характер. Огромные массы воды, около 519000 куб. км в год, испаряясь с поверхности водоемов, переходят в газообразном состоянии в состав атмосферы, переносятся движением воздуха и низвергаются на сушу в виде ливней или оседают туманом и росой. Потоки воды вновь стекают к понижениям рельефа, оттуда попадают в многочисленные водоемы, чтобы затем опять подняться в составе испарений в атмосферу.