Смекни!
smekni.com

Исследование математических операций 2 (стр. 19 из 28)

S1 - канал занят (идет обслуживание заявки).

Рис. 4.1. Граф состояний одноканальной СМО с отказами

Обозначим вероятности состояний: P0(t) - вероятность состояния «канал свободен»; P1(t) - вероятность состояния «канал занят». По размеченному графу состояний (рис. 4.1) составим систему дифференциальных уравнений Колмогорова для вероятностей состояний:

(4.3)

Система линейных дифференциальных уравнений (4.3) имеет решение с учетом нормировочного условия P0(t) + P1(t) = 1 . Реше­ние данной системы называется неустановившимся, поскольку оно непосредственно зависит от t и выглядит следующим образом:

, (4.4)

P1(t) = 1 - P0(t) = 1 . (4.5)

Нетрудно убедиться, что для одноканальной СМО с отказами вероятность P0(t) есть не что иное, как относительная пропускная способность системы q.

Действительно, P0 - вероятность того, что в момент t канал сво­боден и заявка, пришедшая к моменту t, будет обслужена, а следо­вательно, для данного момента времени t среднее отношение числа обслуженных заявок к числу поступивших также равно P0(t), т. е.

q = P0(t), (4.6)

По истечении большого интервала времени (при

) дости­гается стационарный (установившийся) режим:

, (4.7)

Зная относительную пропускную способность, легко найти аб­солютную. Абсолютная пропускная способность (А) - среднее чис­ло заявок, которое может обслужить система массового обслужива­ния в единицу времени:

. (4.8)

Вероятность отказа в обслуживании заявки будет равна вероят­ности состояния «канал занят»:

. (4.9)

Данная величина Pотк может быть интерпретирована как сред­няя доля необслуженных заявок среди поданных.

Пример 4.1. Пусть одноканальная СМО с отказами представля­ет собой один пост ежедневного обслуживания (ЕО) для мойки ав­томобилей. Заявка - автомобиль, прибывший в момент, когда пост занят, - получает отказ в обслуживании. Интенсивность потока ав­томобилей

= 1,0 (автомобиль в час). Средняя продолжительность обслуживания - 1,8 часа. Поток автомобилей и поток обслужива­нии являются простейшими.

Требуется определить в установившемся режиме предельные значения:

 относительной пропускной способности q;

 абсолютной пропускной способности А;

 вероятности отказа Pотк ;

Сравните фактическую пропускную способность СМО с номи­нальной, которая была бы, если бы каждый автомобиль обслужи­вался точно 1,8 часа и автомобили следовали один за другим без перерыва.

Решение

1. Определим интенсивность потока обслуживания:

.

2. Вычислим относительную пропускную способность:

.

Величина q означает, что в установившемся режиме система будет обслуживать примерно 35% прибывающих на пост ЕО авто­мобилей.

3. Абсолютную пропускную способность определим по формуле:

.

Это означает, что система (пост ЕО) способна осуществить в среднем 0,356 обслуживания автомобилей в час.

4. Вероятность отказа:

.

Это означает, что около 65% прибывших автомобилей на пост ЕО получат отказ в обслуживании.

5. Определим номинальную пропускную способность системы:

(автомобилей в час).

Оказывается, что Аном в 1,5 раза

больше, чем фактическая пропускная способность, вычисленная с учетом случай­ного характера потока заявок и времени обслуживания.

Рассмотрим теперь одноканальную СМО с ожиданием.

Система массового обслуживания имеет один канал. Входящий поток заявок на обслуживание - простейший поток с интенсивно­стью

. Интенсивность потока обслуживания равна
(т. е. в сред­нем непрерывно занятый канал будет выдавать
обслуженных за­явок). Длительность обслуживания - случайная величина, подчи­ненная показательному закону распределения. Поток обслужива­нии является простейшим пуассоновским потоком событий. Заявка, поступившая в момент, когда канал занят, становится в очередь и ожидает обслуживания.

Предположим, что независимо от того, сколько требований по­ступает на вход обслуживающей системы, данная система (очередь + обслуживаемые клиенты) не может вместить более N-требований (заявок), т. е. клиенты, не попавшие в ожидание, вынуждены об­служиваться в другом месте. Наконец, источник, порождающий за­явки на обслуживание, имеет неограниченную (бесконечно боль­шую) емкость.

Граф состояний СМО в этом случае имеет вид, показанный на рис. 4.2.

Рис. 4.2. Граф состояний одноканальной СМО с ожиданием (схема гибели и размножения)

Состояния СМО имеют следующую интерпретацию:

S0 - «канал свободен»;

S1 - «канал занят» (очереди нет);

S2 - «канал занят» (одна заявка стоит в очереди);

…………………………………………………….

Sn - «канал занят» (n -1 заявок стоит в очереди);

SN - «канал занят» (N - 1 заявок стоит в очереди). Стационарный процесс в данной системе будет описываться следующей системой алгебраических уравнений:

, (4.10)

где

; n – номер состояния.

Решение приведенной выше системы уравнений (4.10) для на­шей модели СМО имеет вид

(4.11)

(4.12)

Тогда

Следует отметить, что выполнение условия стационарности

для данной СМО не обязательно, поскольку число допускаемых в обслуживающую систему заявок контролируется путем введения ограничения на длину очереди (которая не может превы­шать N - 1), а не соотношением между интенсивностями входного потока, т. е. не отношением
.

Определим характеристики одноканальной СМО с ожиданием и ограниченной длиной очереди, равной (N - 1):

 вероятность отказа в обслуживании заявки:

(4.13)

 относительная пропускная способность системы:

(4.14)

 абсолютная пропускная способность:

(4.15)

 среднее число находящихся в системе заявок:

(4.16)

 среднее время пребывания заявки в системе:

(4.17)

 средняя продолжительность пребывания клиента (заявки) в очереди:

(4.18)

 среднее число заявок (клиентов) в очереди (длина очереди):

(4.19)

Рассмотрим пример одноканальной СМО с ожиданием.

Пример 4.2. Специализированный пост диагностики представ­ляет собой одноканальную СМО. Число стоянок для автомоби­лей, ожидающих проведения диагностики, ограниченно и равно 3 [(N - 1) = 3]. Если все стоянки заняты, т. е. в очереди уже нахо­дится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток ав­томобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность

= 0,85 (автомобиля в час). Вре­мя диагностики автомобиля распределено по показательному зако­ну и в среднем равно 1,05 час.

Требуется определить вероятностные характеристики поста ди­агностики, работающего в стационарном режиме.

Решение

1. Параметр потока обслуживании автомобилей: