Смекни!
smekni.com

Патофизиология дыхания (стр. 10 из 24)

В физиологических условиях в разных участках легких объем кровотока определяется комплексом факторов, среди которых ведущее место занимает рО2 альвеолярного воздуха. Уменьшение вентиляции альвеолы и снижение в ней рО2 сопровождается гипоперфузией этой зоны. Благодаря такому механизму регуляции в покое часть альвеол не функционирует, и, тем не менее, насыщение крови кислородом поддерживается на адекватном уровне (96-98%). Однако при значительном нарушении вентиляции альвеол происходит повышение давления в легочной артерии, вызванное спазмом сосудов. Окончательно механизм этого феномена не выяснен. Однако четко выявлено усиление вазоконстрикции при повышении концентрации ионов [Н+], накоплении вазоконстрикторных субстанций в зоне невентилируемых альвеол (гистамин, серотонин, ПГ F2α), активации β-адренергической импульсации легочных сосудов в условиях гипоксии. При отсутствии патологического процесса в легких выключение из вентиляции части функционирующей поверхности вызывает рефлекторное уменьшение в тех же участках и легочного кровотока. При патологии этот приспособительный механизм может оказаться неадекватным и проявляться в виде гиперреактивности (возникновение артериальной легочной гипертензии), гипореактивности (увеличение шунтирования венозной крови) и гипоксемии. Повышение давления в малом круге в условиях покоя свидетельствует о манифестации легочной гипертензии, выявление повышенного давления только в условиях физической нагрузки – о латентной форме легочной гипертензии.

Причины первичной (идиопатической) легочной гипертензии остаются неясными. Некоторые авторы связывают ее развитие с патологией легочного нервного сплетения (плексогенная легочная артериопатия) и веноокклюзионной патологией. Диагноз первичной легочной гипертензии может быть поставлен при отсутствии в анамнезе указаний на легочную и сердечную патологию, повышении легочного давления при нормальном капиллярном кровотоке, отсутствии локальных изменений в сосудистом русле легких при ангиографическом исследовании. Для этой патологии характерно высокое давление в легочной артерии и гипертрофия правых отделов сердца. При морфологических исследованиях выявляется концентрический фиброз интимы легочной артерии.

Заболевания легких, особенно сопровождающиеся обструктивными нарушениями, могут приводить к развитию вторичной легочной гипертензии.

Соответственно степени альвеолярной гиповентиляции и альвеолярной гипоксии возникает спазм легочных артериол, ограничивающий кровоток через плохо вентилируемые альвеолы и препятствующий сбросу венозной крови в большой круг кровообращения (альвеолярно-сосудистый рефлекс Эйлера-Лильестранда). Выраженность рефлекса зависит от степени альвеолярной гиповентиляции.

При сердечной недостаточности также возможно развитие легочной гипертензии.

У здоровых людей может развиваться преходящая легочная; гипертензия при вдыхании воздуха с низким содержанием кислорода.

Функциональная диагностика перфузионных нарушений. Неинвазивные методы функциональной диагностики (электрокардиография, механокардиография и др.) позволяют косвенно оценивать состояние перфузии легких и связанных с этим органных нарушений. В последние годы широкое распространение получили методы ангиографии и радиоизотопной сцинтиграфии.

Исследование легочного кровотока можно проводить локально и на органном уровне. Общий объем легочной перфузии равен кровотоку в большом круге кровообращения. Измеряют его методом газо- и термодилюции, магнитной флоуриметрии, радиоизотопным методом. Принцип метода разведения красителя или радиоактивного изотопа заключается в том, что объем легочного кровотока равен отношению количества индикатора к его концентрации в артериальной крови.

Способ определения легочного кровотока по Фику основан на сопоставлении объема поглощенного кислорода (vO2) с артерио-венозной разницей по кислороду:

Q =VO2/paO2 – pvO2.

Ингаляционные пробы с использованием таких газов, как закись азота, ацетилен позволяют одновременно оценить легочную перфузию, диффузионную способность и альвеолярный объем.

Легочную перфузию оценивают при измерении объема перфузированной крови в единицу времени, системного артериального давления и давления в легочной артерии, которое измеряют с помощью катетера, введенного в правый желудочек и легочную артерию.

Основой раннего выяснения перфузионных нарушений является определение гемодинамических показателей в покое и при дозированной физической нагрузке, в положении сидя (лежа) и стоя.

В условиях нагрузки увеличение объема перфузируемой крови сопровождается повышением давления в легочной артерии, которое людей моложе 40 лет не превышает 30 мм рт.ст.

Нарушение вентиляционно-перфузионных отношений. Процессы вентиляции, перфузии и диффузии протекают в различных отделах легких неодинаково. Эта функциональная неоднородность имеет существенное значение в условиях патологии. Нарушения газообмена возникают при изменении каждой из перечисленных функций, наиболее часто – при несоответствии вентиляции и кровотока.

Суммарно в легких отношение легочной вентиляции (Va, л/мин) к перфузии (Q, л/мин) у здорового человека в покое составляет примерно 0,8-1,0 (например, Vа/Q=4,5/5=0,9). Локальные отклонения отношения Va/Q=0,63-3,3 проявляются минимальными изменениями суммарного газообмена. У человека, находящегося в вертикальном положении, интенсивность перфузии снижается от основания к верхушкам легких, в нижних отделах по сравнению с верхушками кровоток значительно больше.

Расстояние между верхушками и диафрагмой у взрослого человека равно примерно 30 см. В положении стоя в плевральной полости разница давления в верхних и нижних отделах составляет в среднем 7 см вод.ст., из этого следует, что в области верхушек транспульмональное давление выше, чем у основания. Поэтому на вдохе наиболее выражено растяжение альвеол, расположенных в верхних отделах легких, и на их долю приходится большая нагрузка при дыхании.

Различия легочного кровотока проявляются в легочных сегментах, расположенных на разных уровнях относительно основания сердца. В отделах легких, расположенных ниже уровня сердца, к среднему давлению в легочных артериях прибавляется гидростатическое давление кровяного столба. В отделах, расположенных выше уровня сердца, наоборот, величина легочного кровотока меньше на эту величину.

Относительно низкое давление в малом круге кровообращения определяет ограничение перфузии в верхушках легких, которое в положении лежа нивелируется и вместо него появляется вентро-дорзальный градиент. В положении на боку легкое, расположенное ниже, вентилируется и перфузируется лучше. Во время физической нагрузки значение коэффициента Va/Q изменяется, при этом повышение перфузионного давления обеспечивает улучшение кровотока в верхушечных отделах легких.

Если вентиляция преобладает над кровотоком (АВ/МО будет больше 1,0), то из крови вымывается большее количество СО2, что ведет к гипокапнии. Если вентиляция отстает от кровотока (АВ/МО меньше 1,0), то в альвеолярном воздухе будет нарастать РСО2 и снижаться РО2, что приведет к гипоксии и гиперкапнии.

При нормальном газообмене оптимальное соотношение АВ/МО должно поддерживаться во всех альвеолах. Однако полностью это условие не выполняется даже в норме из-за анатомических и функциональных особенностей отдельных легочных единиц (участков легких). Например, альвеолярная вентиляция и перфузия в нижних отделах легких осуществляется интенсивнее, чем в остальных его отделах. В верхних отделах легких альвеолярная вентиляция доминирует над кровотоком, а в нижних, наоборот – перфузия преобладает над альвеолярной вентиляцией.

В условиях патологии (например, при хронических обструктивных заболеваниях легких, дистресс-спндроме взрослых и новорожденных) неравномерное распределение сопротивления дыхательных путей и растяжимости легочной ткани приводит к гиповентиляции, нарушается соответствие между вентиляцией и кровотоком, а значение вентиляционно-перфузионного коэффициента может быть в пределах от 0,01 до 100. Наряду с этим имеются нормально функционирующие зоны легочной ткани и пространства, вентилируемые крайне недостаточно, вплоть до формирования полного шунта.

Низкое значение Va/Q характерно для тех зон, где вентиляция значительно меньше перфузии, наоборот, высокие значения Va/Q определяются в зонах с гипервентиляцией и резко сниженной перфузией, при этом одни зоны легких хорошо вентилируются и кровоснабжаются, а в других – вентилируется неперфузируемое альвеолярное мертвое пространство. В отдельных зонах вентиляция и кровоток находятся в оптимальном соответствии, благодаря чему осуществляется адекватный газообмен, но в других зонах имеет место перфузия нефункционирующих коллабированных альвеол. В случае, если процессы вентиляции и перфузии сохраняются на постоянном уровне при уменьшении поверхности газообмена, постепенно увеличивается объем мертвого пространства и примесь венозной крови с последующим развитием гипоксии и гиперкапнии.

Нарушения вёнтиляционно-перфузионных отношений, как правило, проявляются гипоксемией и нормокапнией. Повышение содержания углекислого газа приводит к стимуляции дыхательного центра и гипервентиляции. Однако на величину рО2 артериальной крови это значительного влияния не оказывает, так как увеличение вентиляции происходит преимущественно в хорошо вентилируемых альвеолах. Принадлежащие к ним капилляры содержат оксигенированную кровь, и дальнейшее повышение рО2 даст только незначительный дополнительный прирост оксигемоглобина.