Смекни!
smekni.com

Патофизиология дыхания (стр. 3 из 24)

Для оценки функционального состояния аппарата внешнего дыхания у взрослых используют следующие показатели (Таблица 1).

Одним из основных показателей вентиляции является МОД, который рассчитывают по формуле:

МОД = ДО×ЧД

Величина МОД широко используется для оценки вентиляции в норме и патологии. Однако одинаковые величины МОД могут быть получены при различных сочетаниях дыхательного объема и частоты дыхания. Понятно, что при одних и тех же значениях МОД для организма эффективным является редкое и глубокое дыхание по сравнению с частым и поверхностным, хотя на поддержание такого МОД тратиться больше энергии (кислорода).

Объем выдыхаемого воздуха после максимально глубокого вдоха представляет собой жизненную емкость легких (ЖЕЛ). ЖЕЛ состоит из резервного объема вдоха, дыхательного объема (ДО) и резервного объема выдоха. Суммарно остаточный объем легких (ООЛ)и ЖЕЛ формируют общую емкость легких (ОЕЛ).

Нарушения альвеолярной вентиляции (гиповентиляция, гипервентиляция, неравномерная вентиляция) возникают в результате внелегочных (нарушения нервной регуляции, повреждения дыхательной мускулатуры, грудной клетки) и легочных (изменения проходимости дыхательных путей и повреждения паренхимы) расстройств.

Показателем вентиляции является МОД, который можно представить в виде суммы показателей альвеолярной вентиляции и вентиляции мертвого пространства. Объем альвеолярной вентиляции не должен составлять менее 66% МОД. Нарушения альвеолярной вентиляции выражаются в виде:

1. Альвеолярной гиповентиляции,

2. Альвеолярной гипервентиляции;

3. Неравномерной вентиляции.

1. Альвеолярная гиповентиляция – это типовая форма нарушения внешнего дыхания, при которой минутный объем вентиляции меньше газо-обменной потребности организма в единицу времени. Последствия гиповентиляции характеризуются увеличением содержания СО2 в альвеолярном воздухе и, соответственно, в артериальной крови(гиперкапния) снижением содержание кислорода в альвеолярном воздухе и артериальной крови (гипоксемия). Обязательным признаком альвеолярной гиповентиляции является респираторный ацидоз. Устранение гипоксемии возможно при дыхании чистым кислородом, однако это не сопровождается адекватной элиминацией СО2, и ацидоз сохраняется. Гиповентиляция при легочной патологии является проявлением истощения резерва аппарата внешнего дыхания вследствие снижения сократительной способности дыхательной мускулатуры и вторичного угнетения дыхательного центра. В основе развития альвеолярной гиповентиляции лежат два основных механизма:

1. Нарушения биомеханики дыхания;

2. Расстройство механизмов регуляции внешнего дыхания.

I. Биомеханика дыхания изучает соотношение давлений в плевральной полости, альвеолах и воздухоносных путях объемам легких, а также скорости движения воздуха, различные типы сопротивления (эластическое, аэродинамическое, инерционное) и работу дыхательной мускулатуры. Нарушения биомеханики дыхания могут быть связаны с поражением дыхательного аппарата на любом уровне и проявляются:

1. Обструктивными;

2. Рестриктивными нарушениями.

А. Обструктивные нарушения могут быть эндо- и экзобронхиального генеза. Гиперсекреция бронхиальных желез, бронхоспазм, отечно-воспалительные изменения слизистой возникают при функциональных нарушениях бронхиол и обычно хорошо поддаются терапии в отличие от обструкции бронхов в результате уменьшения их проходимости на фоне легочной эмфиземы. Возможно нарушение проходимости магистральных дыхательных путей при сдавлении опухолью или загрудинным зобом.

Обструктивный тип расстройств дыхания связан с затруднением проходимости дыхательных путей в связи с увеличением неэластического сопротивления потоку воздуха, что ведет к снижению вентиляции как при физической нагрузке, так и в состоянии покоя. В инспираторную фазу просвет бронхов увеличивается, а в экспираторную – уменьшается до такой степени, что может развиться полное закрытие мелких бронхиол.

Неэластическое сопротивление легких обусловлено тремя компонентами:

· аэродинамическое (вязкостное) сопротивление дыхательных путей возникает из-за перемещения молекул газа и их трения о стенки дыхательных путей;

· фрикционное (деформационное) сопротивление появляется в связи с действием сил трения во время дыхания (при патологических изменениях дыхательных путей и легочной паренхимы фрикционное сопротивление возрастает в несколько раз);

· инерционное сопротивление зависит от массы тела и, особенно, грудной стенки, существует в покое (дыхательная пауза) при дыхании (вдох, выдох).

Общее неэластическое сопротивление зависит от дыхательного объема. У здоровых лиц оно составляет 1,3-3,5 см вод.ст./л/мин. При спокойном вдохе сила дыхательных мышц необходима для преодоление сопротивления эластической тяги легких. При форсированном дыхании резко возрастают силы, направленные на преодоление неэластического сопротивления и расходуемые на преодоление сопротивления току воздуха в трахее и бронхах. Величину неэластического сопротивления определяет состояние воздухоносных путей и скорость потока воздуха. При обструктивных нарушениях сопротивление току воздуха при вдохе и выдохе возрастает (гипертоническая дискинезия). Возможно пролабирование мембранной части трахеи и крупных бронхов и частичная или полная обтурация их просвета (гипотоническая дискинезия). Утрата легкими эластических свойств приводит к спадению мелких бронхов и, соответственно, к увеличению бронхиального сопротивления на выдохе (эмфизема легких).

При тахипноэ скорость воздушного потока увеличивается, происходит завихрение воздуха, увеличивается турбулентный компонент сопротивления, для преодоления которого требуется дополнительное усилие дыхательной мускулатуры. Адекватной альвеолярной вентиляции при этом не происходит, а объемно-временные параметры изменяются.

При повышении сопротивления дыхательных путей увеличивается работа дыхательных мышц, повышаются энергетические затраты и кислородная задолженность дыхательной мускулатуры. Следовательно, компенсаторно-приспособительные возможности аппарата внешнего дыхания ограничиваются.

При хронических неспецифических заболеваниях легких, обструктивной эмфиземе, интерстициальном отеке легких, бронхиолите возникает раннее экспираторное закрытие дыхательных путей. Этот физиологический механизм у здорового человека включается в фазу выдоха, когда объем легких, уменьшается и приближается к остаточному объему легких. Происходит постепенное закрытие дыхательных путей, начиная с нижних отделов легких и захватывая вышерасположенные зоны. Экспираторное закрытие дыхательных путей происходит в том месте, где плевральное давление в какой-то момент выдоха превышает внутрибронхиальное. Согласно правилу Бернулли, сумма давлений, направленных вдоль потока и радиально в стенке бронха, – величина постоянная. По мере увеличения осевого давления при констрикции бронха потеря эластичности бронха и альвеол, растягивающих его, радиально направленное давление становится недостаточным, чтобы предупредить спадение бронха на выдохе.

Заболевания, связанные с обструктивными нарушениями (бронхиальная астма, обструктивный бронхит, эмфизема, частичная или полная обтурация бронхов, воспалительные изменения трахеи, бронхов, сопровождающиеся отеком или гипертрофией слизистой дыхательных путей и другие), встречаются в клинике значительно чаще.

Большое значение в патогенезе обструктивных нарушений имеет гиперреактивность бронхов – выраженная бронхоконстрикция, возникающая в ответ на раздражение. Вещества, обладающие раздражающим действием, проникают в интерстиций, активируют нервные рецепторы, в первую очередь п.vagus, и вызывают бронхоспазм, который устраняется фармакологической блокадой блуждающего нерва. Основой бронхоконстрикции является специфическая (аллергическая) и неспецифическая (неаллергическая) гиперреактивность.

В тканях легких образуются бронхо- и вазоактивные вещества. Эпителий секретирует фактор, обладающий свойствами бронхорелаксации. При бронхоспазме этот фактор в большей степени влияет на тонус гладкой мускулатуры крупных бронхов. Секреция его снижена при повреждении эпителиальных клеток, например, при бронхиальной астме, что способствует стойкой обструкции бронхов. В эндотелии легочных сосудов и эпителии бронхов синтезируется пептид эндотелин-I, проявляющий выраженное бронхоконст-рикторное и вазоконстрикторное действие. Продукция эндотелина-I увеличивается при гипоксии, сердечной недостаточности, бактериемии, хирургических вмешательствах.

Эйкозаноиды, образующиеся при распаде арахидоновой кислоты, оказывают расслабляющее (простагландин Е ) и констрикторное (лейкотриены, ПГ F2α, ТгА2) действие на гладкую мускулатуру, однако суммарно они проявляют бронхоконстрикторный эффект. Кроме того, эйкозаноиды регулируют агрегацию тромбоцитов (стимуляция – ТгА2, угнетение – ПГ I2), повышают проницаемость сосудистой, стенки, вызывают ее дилатацию, усиливают секрецию слизистой, активируют хемотаксис, ингибируют активность натуральных киллеров (липоксин), регулируют высвобождение медиаторов тучной клетки.