Смекни!
smekni.com

Анализ классической электродинамики и теории относительности (стр. 7 из 54)

«Одни относят функцию ψ к некоторой индивидуальной системе, другие — к некоторому действительному или потенциальному статистическому ансамблю тождественных систем, третьи рассматривают ψ -функцию как меру нашей информации, или степень уверенности относительно некоторого индивидуального комплекса, состоящего из макросистемы и прибора, или же, наконец, просто как каталог измерений, производимых над множеством идентично приготовленных микросистем».

Такое многообразие вариантов истолкования ψ-функции затрудняет строгую причинную интерпретацию явлений микромира. Это одно из свидетельств того, что квантовые теории находятся в стадии становления и развития и не достигли уровня внутренней завершенности, свойственной классическим теориям.

Но о проблемах становления квантовых теорий свидетельствует не только интерпретация ψ-функции. Хотя релятивистская механика и электродинамика на первый взгляд представляются законченными теориями, более глубокий анализ показывает, что по ряду причин эти теории также не избежали противоречий и внутренних трудностей. Например, в электродинамике существуют проблема электромагнитной массы, проблема реакции излучения заряда и др. Неудачи в попытках разрешения этих проблем в рамках самих теорий в прошлом и бурное развитие теорий микромира породили надежду, что развитие квантовых теорий поможет ликвидировать трудности. А до тех пор они должны восприниматься какнеизбежное «зло», с которым так или иначе приходится мириться, и ждать успехов от квантовых теорий.

В то же время квантовые теории сами столкнулись со многими проблемами и противоречиями. Любопытно заметить, что часть этих трудностей имеет «классическую» природу, т. е. досталась «по наследству» от классических теорий и обусловлена их внутренней незавершенностью. Получается «порочный круг»: разрешение противоречий классических теорий мы возлагаем на квантовые теории, а трудности квантовых определяются противоречиями классических.

Со временем надежда на способность квантовых теорий устранить противоречия и трудности в теориях классических стала угасать, но до сих пор интерес к разрешению противоречий классических теорий в рамках их самих все еще остается на втором плане.

Таким образом, трудности, встречающиеся иногда при объяснении явлений микромира с позиции причинности, имеют объективное происхождение и объясняются особенностями становления квантовых теорий, но они не являются принципиальными, запрещающими или ограничивающими применение принципа причинности в микромире, в частности применение структурной модели причинности.

Причинность и взаимодействие всегда взаимосвязаны. Если взаимодействие обладает свойствами всеобщности, универсальности и объективности, то столь же универсальны, всеобщи и объективны причинно-следственные связи и отношения. Поэтому в принципе нельзя согласиться с утверждениями Бома, что при описании явлений микромира можно в одних случаях опираться на философский индетерминизм, в других — придерживаться принципа причинности [12].

Мы считаем глубоко ошибочной мысль В. Я. Перминова о том, что «понятие дополнительности указывает путь примирения (!) детерминизма и индетерминизма» [13], независимо от того, относится эта мысль к философии естествознания или к конкретной естественнонаучной теории. Путь примирения материалистической точки зрения с позицией современного позитивизма в данном вопросе есть эклектика, есть отрицание объективной диалектики. В. И. Ленин подчеркивал, что «вопрос о причинности имеет особенно важное значение для определения философской линии того или другого новейшего «изма»...» (т. 18, с. 157). И путь становления квантовых теорий лежит не через отрицание или ограничение, а через утверждение причинности в микромире.

2.4 Описание, объяснение и причинность

Структура научных теорий естествознания и функции научных теорий прямо или косвенно связаны с причинным объяснением явлений материального мира. Если обратиться к структурной модели причинности, то можно выявить два характерных момента, две важные стороны, которые так или иначе связаны с функциями научных теорий.

Первая касается описания причинных связей и отвечает на вопрос: как, в какой последовательности? Ей соответствует любая ветвь частного следствия, связывающая обусловленные состояния. Она дает не только описание перехода объекта из одного состояния в другое, но описывает и охватывает всю причинную цепь как последовательность связанных и обусловленных состояний, не вдаваясь глубоко в сущность, в источник изменения состояний звеньев цепи.

Вторая сторона отвечает на вопрос: почему, по какой причине? Она, напротив, дробит причинно-следственную цепь на отдельные элементарные звенья и дает объяснение изменений состояний, опираясь на взаимодействие. Это объясняющая сторона.

Две эти стороны прямо связаны с двумя важными функциями научной теории: объясняющей и описательной. Поскольку принцип причинности лежал, и будет лежать в основе любой естественнонаучной теории, теория всегда будет выполнять эти две функции: описание и объяснение [14].

Однако не только в этом проявляется методологическая функция принципа причинности. Внутреннее структурирование самой теории также связано с этим принципом. Возьмем, к примеру, классическую механику с ее тремя традиционными разделами: кинематикой, динамикой и статикой. В кинематике силовые взаимодействия не рассматриваются, а идет описание (физическое и математическое) видов движения материальных точек и материальных объектов. Взаимодействие подразумевается, но оно отходит на второй план, оставляя приоритет описанию сложных связанных движений через характеристики их состояний. Разумеется, этот факт не может служить поводом для классификации кинематики как непричинного способа описания, поскольку кинематика отражает эволюционную сторону причинно-следственных отношений, связывающих различные состояния.

Динамика — теоретический раздел, который включает в себя полное причинноследственное описание и объяснение, опираясь на структурную модель причинноследственных отношений. В этом смысле кинематика может считаться подразделом динамики.

Особый интерес с точки зрения причинности представляет статика, в которой следственные цепи вырождены (отсутствуют), и мы имеем дело только со связями и взаимодействиями статического характера. В отличие от явлений объективной реальности, где не существует абсолютно устойчивых систем, статические задачи — идеализация или предельный случай, допустимый в частнонаучных теориях. Но принцип причинности справедлив и здесь, поскольку не только решать статические задачи, но и понять сущность статики без применения «принципа виртуальных перемещений» или родственных ему принципов невозможно. «Виртуальные перемещения» непосредственно связаны с изменением состояний в окрестности состояния равновесия, т. е., в конечном счете, с причинно-следственными отношениями.

Рассмотрим теперь электродинамику. Иногда ее отождествляют только с уравнениями

Максвелла. Это неверно, поскольку уравнения Максвелла описывают поведение волн (излучение, распространение, дифракцию и т. д.) при заданных граничных и начальных условиях. Они не включают в себя описание взаимодействия как взаимного действия. Принцип причинности привносится вместе с граничными и начальными условиями (запаздывающие потенциалы). Это своеобразная «кинематика» волновых процессов, если подобное сравнение позволительно. «Динамику», а с ней и причинность, вносит уравнение движения Лоренца, описывающее силовые стороны взаимодействия. Именно связь уравнений Максвелла и уравнения движения Лоренца обеспечивает достаточно полное причинно-следственное описание явлений электромагнетизма. Подобные примеры можно было бы продолжить. Но и приведенных достаточно, чтобы убедиться, что причинность и ее структурная модель находят отражение в структуре и функциях научных теорий.

2.5 Эволюционная модель причинности

Если в начале нашей работы мы шли от эволюционной модели причинности к структурной, то теперь предстоит обратный путь от структурной модели к эволюционной. Это необходимо, чтобы правильно оценить взаимную связь и отличительные особенности эволюционной модели.

Уже в неразветвленной линейной причинно-следственной цепи мы вынуждены отказаться от полного описания всех причинно-следственных отношений, т. е. не учитываем некоторые частные следствия. Структурная модель позволяет неразветвленные линейные причинно-следственные цепи свести к двум основным типам.

a Объектная причинная цепь. Образуется тогда, когда мы выделяем какой-либо материальный объект и следим за изменением его состояния во времени. Примером могут служить наблюдения за состоянием броуновской частицы, или за эволюциями космического корабля, или за распространением электромагнитной волны от антенны передатчика до антенны приемника.

b Информационная причинная цепь. Появляется, когда мы следим не за состоянием материального объекта, а за некоторым информирующим явлением, которое в процессе взаимодействий различных материальных объектов связано последовательно во времени с различными объектами. Примером может служить передача устной информации с помощью эстафеты и т. п.

Все линейные неразветвленные причинные цепи сводятся к одному из этих двух типов или к их комбинации. Такие цепи описывают с помощью эволюционной модели причинности. При эволюционном описании взаимодействие остается на втором плане, а на первый план выходит материальный объект или индикатор его состояния. В силу этого главное внимание сосредоточивается на описании последовательности событий во времени. Поэтому данная модель получила название эволюционной.