Смекни!
smekni.com

Электрорадиоэлементы устройства функциональной микроэлектроники и технология радиоэлектронных (стр. 69 из 102)

Стандартная толщина трафарета в технологии ПМ составляет 200мкм. Учитывая разнообразие паст, в некоторых случаях могут применяться и другие толщины (например, 175,130 мкм). Для компонентов с малым шагом выводов (Р≥ 0,4мм) используются трафареты толщиной 120 мкм чаще всего ступенчатой формы (рис. 3.14).

Рис. 3.14. Трафарет ступенчатой формы для компонентов с малым шагом выводов

Учитывая технологические особенности трафаретной печати и реологические свойства паст, размеры окна (ширина и длина) выбираются меньше размеров контактной площадки. Рекомендуются следующие соотношения для расчета размеров окна трафарета:

где W— размер контактной площадки (W≥ 0,4 мм, толщина трафарета 200

мкм).

Для случая W < 0,4 мм (толщина трафарета 120 мкм):

При больших размерах окон трафаретов (более 2 мм) в припойной пасте могут появляться пробелы (пустоты, углубления). Для исключения этого недостатка рекомендуется большие окна разделять на несколько малых, как это показано на рис. 3.15.

При этом следует использовать следующие рекомендации:

• если размер контактной площадки равен 2—3 мм, то число окон выбирается равным 2, если 3-4 мм, то 3 (рис. 3.15);

• расстояние между внешней кромкой окна и контактной площадкой выбирается в соответствии с приведенными выражениями и составляет 0,05 и

0,015 мм;

Рис. 3.15. Пример разделения большого окна

• толщина стенок между окнами, исходя из условий механической стабильности трафарета, выбирается от 0,2 до 0,3 мм;

• размер окон должен быть кратен 0,1 мм.

При ультрамалом шаге контактных площадок (Р < 0,4 мм) может наблюдаться такой дефект трафаретной печати, как растекание («размазывание») припойной пасты. Устранение этого дефекта достигается изготовлением трафарета с меньшими допусками на размеры окон, применением окон с расширенной нижней частью, регулярной отпечаткой нижней части трафарета.

Окна высокоточных трафаретов выполняются методами химического травления (до 0,5 мм), с помощью лазерного фрезерования (менее 0,3 мм). В последние годы для этих целей применяется метод электрохимического осаждения никеля.

Рис. 3.16. Конструкция ракеля для трафаретной печати ПМ-изделий (а), для

ГИС (б)

В отличие от технологии ГИС при ПМ используются металлические ракели ромбовидного или прямоугольного сечения с алмазным покрытием, что обеспечивает качественное нанесение пасты на платы большой площади и большую износостойкость их рабочих поверхностей (рис.3.16).

Для нанесения припойных паст при мелкосерийном производстве (как и адгезива) эффективным является применение точечных дозaторов (dispensing). В настоящее время имеются две разновидности этого метода: дозирование за счет выбора давления в диспенсере и времени выдавливания («time-pressure» method) (рис. 3.17) и с помощью червячного экструдера («rotary-pump» method) (рис 3.18).

Применяемая оснастка и режимы работы диспенсирования должны обеспечить требуемую массу, форму и позицию точки припойной пасты на контактной площадке. Для получения требуемого качества паяных соѐдинений масса припойной пасты в точке должна составлять от 0,22 мг (ИМС с шагом 0,65 мм) до 1,16 для транзисторных корпусов. Допустимое отклонение массы точки (2о) должно быть не более 25%. Для уменьшения растекания припойной пасты за пределы контактной площадки отношение массы пасты к диаметру точки должно быть 0,5 мг/мм для малых точек (0,2—-0,35 мг) и около 1 мг/мм для больших точек (0,35— 1,1 мг).

При использовании первого метода необходимая масса и диаметр точки припойной пасты o6eспечиваются за счѐт выбора давления в цилиндре и времени выдавливания. Эти параметры будут зависеть также от формы и диаметра иглы.

В серийном оборудовании время диспенсирования обычно, выбирается в пределах 50-200 мс, давление порядка – 3бар (3*105Па). Следует учитывать также зависимость реологических свойств" припойной пасты от температуры окружающей среды. Поэтому в состав оборудования входят системы контроля и стабилизации температуры игольчатого клапана.

Рис. 3.17. Схема диспенсера, реализующего метод «time-pressure»

Рис. 3.18. Схема диспенсера, реализующего метод «rotary-pump»

Как видно из рис. 3.19, игла диспенсера имеет скос (α = 30°). Форма капли будет зависеть от диаметра иглы, угла скоса и гарантированного расстояния от контактной площадки (S). В процессе диспенсирования игла плоской частью прижимается к контактной площадке, что обеспечивает устойчивость и повторяемость процесса.

Для получения капли пасты малой массы (менее 0,14 мг) больше подходит метод «rotary-pump». При этом необходимый размер и масса капли обеспечиваются в основном временем вращения червячного шкива. Размер капли будет зависеть также от ѐмкости спиральной проточки в шкиве, скорости его вращения, конфигурации иглы и давления в рабочем цилиндре и, конечно же, от реологических свойств платы. Форма иглы в этом методе упрощается (рис 3.20) за счет того, что гарантированное расстояние до контактной площадки обеспечивается с помощью дополнительного упора.

d—диаметр иглы; а — угол скоса; s — гарантированный зазор между иглой и контактной площадкой

Рис. 3.19. Конструкция игольчатого клапана

d —диаметр отверстия

Рис. 3.20. Общий вид иглы упрощенной конструкции:

Сравнительные исследования рассматриваемых методов показывают, что первый метод имеет низкую повторяемость результатов при массе капли менее 0,28 мг, в то время как второй метод обеспечивает хорошую повторяемость при массе капли менее 0,22 мг.

3.6. ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ДЛЯ УСТАНОВКИ ПМКОМПОНЕНТОВ НА ПЕЧАТНЫЕ ПЛАТЫ

Одной из важных операций технологического процесса ПМ является установка компонентов на печатные платы. От точности выполнения этой операции в значительной степени зависят надежность, электрические характеристики ПМ-изделий. Учитывая малые геометрические размеры компонентов и малые расстояния между выводами, ручное выполнение этой операции в условиях серийного производства практически невозможно (за исключением ремонта). Поэтому чаще всего используются сборочные автоматы (автоматы укладчики), которые в международной технической литературе получили название «pick-and-place equipment» или «placement system». Такие установки осуществляют извлечение компонентов из подающих устройств и размещение их на контактных площадках печатных плат, обеспечивая необходимую точность установки. Основной тенденцией их развития является повышение точности позиционирования и производительности работы. Большое значение имеет также обеспечение гибкости в работе и программной перенастройке оборудования на новые виды корпусов, систем их подачи и новые топологии печатных плат.

Кроме того, важное значение для такого оборудования имеет повышение выхода годных изделий, что обеспечивается программным управлением процессом сборки, встроенными системами контроля с поиском и заменой неисправных компонентов с использованием систем технического зрения.

В последние годы определилась также тенденция в разработке не отдельных автоматов-укладчиков, а интегрированных монтажно-сборочных комплексов, которые в наибольшей степени удовлетворяют требованиям крупносерийного производства. Некоторые фирмы идут по пути модернизации имеющихся поточных линий для монтажа компонентов со штыревыми выводами. Лидером по выпуску высокопроизводительного оборудования для монтажа чип-компонентов являются японские фирмы («Fuji», TDK, «Sony» и др.). В разработках оборудования для монтажа сложных ПМ-компонен-тов (SO, TAB, кристаллоносители) лидируют американские фирмы («Universal Instruments», «DynaPert», «Amistar» и др.). Оборудование для монтажа компонентов выпускается также и европейскими поставщиками ПМ-компонентов («Philips», «Siemens» и др.).