Смекни!
smekni.com

Электрорадиоэлементы устройства функциональной микроэлектроники и технология радиоэлектронных (стр. 80 из 102)

Скорость травления в свежем растворе до 40 мкм/мин, затем снижается до 5 мкм/мин. Недостатки — большое подтравливание, непригодность для металлических резистов типа Sn—Pb, сложность утилизации, трудность отмывки осадка на платах, высокая стоимость.

Технология регенерации хлорного железа достаточно сложна. Сначала из электролита удаляется медь путем контактного осаждения на стальные стружки. После этого вводится окислитель для перевода Fe2+ в Fe3+ и проводится корректировка содержания FeCl3 до требуемого количества.

Травильный раствор на основе персульфата аммония легко приготавливается, дешевле хлорного железа на 30 — 40 %, не взаимодействует с металлическим резистом. Этот раствор является основным при травлении ПП, проводники которых защищены сплавом олово—свинец. Процесс травления описывается уравнением

Cu(NH4)2S2O8CuSO4(NH4)2SO4 . Состав и режимы травителя: 200—300 г/л (NH4)2S2O8, H2SO4 60 г/л, T = (50— 55) C.

Реакция сопровождается выделением теплоты, что вызывает необходимость стабилизации температурного режима. При травлении происходит большое боковое подтравливание медных проводников. К недостаткам относятся также небольшая допустимая концентрация меди в растворе (35—40 кг/м3), образование смеси ядовитых газов и зубчатого края проводников, невысокая скорость травления (2,5 мкм/мин).

Регенерация осуществляется путем охлаждения травильного раствора. При этом CuSO4 и (NH4)2SO4 выпадают в осадок и отфильтровываются.

Предпочтительными для ПП с металлическими резистами являются медноаммонийные растворы травления, в состав которых входят CuCl2, NH4Cl, NH4NO3, (NH3)2CO3 и аммиак NH3, pH раствора составляет 9,0—9,5. Травление описывается реакцией

CuCu(NH3)4Cl2 2Cu(NH3)2Cl .

Травильный раствор на основе хлорной меди в 20 раз дешевле хлорного железа, характеризуется легкостью отмывки, простотой приготовления, возможностью регенерации, стабильными параметрами травления. Процесс травления описывается реакцией

CuCuCl2 2CuCl .

Состав травителя и режимы: 150 г/л CuCl2, 5 % HCl, T = 40—60 C.

Недостатки: не применяется для резистов из сплава олово—свинец и блестящего лужения. Регенерация осуществляется либо продувкой газообразным хлором, что является экологически вредным процессом:

2CuCl Cl2 2CuCl2 ,

либо введением окислителя — перекиси водорода:

2CuCl H2O2 2HCl 2CuCl22H2O .

Травильный раствор на основе хромового ангидрида и серной кислоты применяют для травления ПП, покрытых сплавом Sn—Ni, Sn—Pb или золотом. Хотя этот раствор является сильным окислителем, он не оказывает влияния на припой из-за образования нерастворимого сульфата свинца. Процесс травления описывается реакцией

3Cu2CrO36H2SO43CuSO4Cr2(SO4)36H2O.

Травление в растворе на основе перекиси водорода с добавками кислот, главным образом соляной или серной, протекает с большой и постоянной скоростью, без кристаллизации и выпадения осадка. Процесс легко поддается автоматизации, раствор на 60 % дешевле хлорного железа. Процесс травления описывается реакцией

Cu H2O2 CuO H2O, CuO H2SO4 CuSO4 H2O.

Получаемая соль CuSO4 является химически чистым веществом и используется для технических целей. Недостатки — необходимость точного контроля состава ванны вследствие взрывоопасности водорода и химическое разрушение металлических частей оборудования.

Травление в щелочных растворах хлоритов происходит по уравнению

2CuNaClO2 4NH4Cl 4NH4OH2Cu(NH3)4Cl2 NaCl 6H2O.

Состав: NaClO2 (30 %) 150 мл/л, NH4OH (28 %) 125 мл/л, NH4HCO3

150 кг/м3.

Раствор характеризуется высокой скоростью травления при 50 C, отсутствием осадка в ванне и на платах, высоким допустимым содержанием меди в растворе (до 200 кг/м3), однако весьма неустойчив, склонен к самопроизвольному разложению со взрывом, поэтому необходимо тщательно контролировать состав ванн и обеспечивать надежную вытяжную вентиляцию на рабочем месте. Окислитель не поддается регенерации.

Процесс травления организуется таким образом, чтобы химическое воздействие травителя на травящийся материал осуществлялось в оптимальном режиме. Травильные установки должны обеспечивать: температурную стабильность процесса; перемещение заготовки и подачу травителя в зону обработки; аэрацию (разбрызгивание) травителя; удаление травителя, промывку, нейтрализацию и сушку плат; непрерывный процесс при массовом производстве.

Различают травильные установки, работающие по принципу погружения, центрифугирования и разбрызгивания. Более производительны установки с разбрызгиванием травильного раствора на одну или обе стороны плат (рис. 5.10).

Платы с помощью транспортного устройства перемещаются из одной технологической зоны в другую. Давление в форсунках находится в пределах 0,1—0,5 МПа, а струя подается либо перпендикулярно к поверхности платы, либо под небольшим углом. Постоянное обновление окислителя в зоне обработки и удаление продуктов реакции обеспечивают высокую производительность, а соответствующая траектория струи — незначительное боковое подтравливание. Линии компонуются из модулей травления, промывки, сушки и регенерации.

Автоматические модульные линии оснащаются устройствами для контроля кислотности раствора, температуры и давления в форсунках.

1 – ванна; 2 – транспортер; 3 – заготовка, 4 – разбрызгиватель;

5 – травитель; 6 – регенератор; 7 – насос

Рис. 5.10. Схема установки струйного травления

Полуавтоматическая линия травления ―Печать-1‖ имеет следующие характеристики: производительность — 16 м2/ч, размеры обрабатываемых плат — 500 500 мм, температура травильного раствора — 35—50 С, число качаний коллекторов с форсунками — 27 в минуту, скорость конвейера — 0,2—2 м/мин, мощность источников питания — 10 кВт, габаритные размеры — 4230 1160 1330 мм.

Линия травления рисунка печатных плат КПМ 1.240.000 состоит из трех модулей: травления, промывки и сушки с регулируемой скоростью транспортного конвейера 0,2—2 м/мин. Травление меди осуществляется раствором, подаваемым через форсунки, совершающие 27—30 качаний в минуту. Травящий раствор работает в замкнутом цикле и очищается фильтром. Производительность до 16 м2/ч.

Во Франции в 1970 г. запатентован электрохимический способ травления, который осуществляется в струе электролита, причем анодом служит медная фольга платы. Скорость травления возрастает в 2—3 раза, однако широкое применение электрохимического травления сдерживается неравномерностью удаления металла с поверхности платы, что приводит к образованию невытравленных островков. Индивидуальный токоподвод и совмещение электрохимического процесса с химическим не обеспечивают его эффективность. Полностью реализовать преимущества электрохимического метода позволяют подвижные носители заряда, которые принимают заряд с анода и переносят его на поверхность меди, переводя последнюю в ионную форму. В качестве подвижных носителей используют взвешенный активированный уголь с содержанием в растворе 15—30 % и размером частиц 10—50 мкм. Электрохимическое травление сводит к минимуму боковое подтравливание токопроводящих дорожек и контактных площадок, обеспечивает разрешающую способность, равную 70—100 мкм.