Смекни!
smekni.com

Строение металлов (стр. 28 из 48)

При проверке качества изделий выявляют различные дефекты. Наиболее распространёнными дефектами являются дефекты сварных швов (рис. 4.11).

Обычно по воздействию на материал или изделие все методы контроля разделяются на две большие группы – разрушающие и неразрушающие.

К разрушающим относят механические, металлографические и коррозионные испытания. Механические испытания сварных соединений и металла шва включают растяжение, изгиб, сплющивание и другие виды разрушения, которые количественно характеризуют прочность, качество и надежность соединений. По характеру нагрузки предусматривают статические, динамические и усталостные испытания. Разрушающие испытания проводят обычно на образцах-свидетелях и реже – на самих изделиях. Образцы-свидетели сваривают из того материала и по той же технологии, что и сварные соединения изделий.

Неразрушающие методы используют для проверки качества швов без их разрушения. При неразрушающих испытаниях, осуществляемых обычно на самих изделиях, оценивают те или иные физические свойства, косвенно характеризующие прочность или надежность соединений. Эти свойства, а точнее их изменение, обычно связаны с наличием дефектов. В связи с этим с помощью данных методов можно узнать местоположение дефектов, их размер и характер, что объясняет их обобщенное название – дефектоскопия. Все неразрушающие методы дефектоскопии различаются физическими явлениями, положенными в их основу.

Общая схема неразрушающего контроля (рис. 4.11) включает:

объект контроля О;

излучающий И и приемный П преобразователи;

излучатель СИ и приемник СП сигналов;

индикаторное устройство ИУ.

Рис. 4.11. Общая схема неразрушающего контроля

Сигналы от излучателя и приемника поступают на индикаторное устройство и служат для принятия решения Р о дефектности или качестве объекта. В настоящее время при контроле сварных соединений и изделий применяются в той или иной мере все перечисленные методы оценки качества, так как универсального не существует. Поэтому важен не только правильный выбор метода контроля, но и их комбинация, сочетание неразрушающих и разрушающих испытаний. Главными критериями при этом должны быть выявляемость наиболее опасных дефектов данным методом, стоимость и производительность контроля. Оптимальным будет такое их сочетание, которое обеспечивает достаточно высокое качество соединений при минимальных затратах и необходимой производительности контроля.

Методы НРК подразделяются на следующие виды: акустические, вихретоковые, магнитные, оптические проникающими веществами (капиллярные и течеисканием), радиационные, радиоволновые, тепловые, электрические. При контроле сварных соединений чаще применяются четыре метода: радиационные, акустические, магнитные и испытания проникающими веществами.

К неразрушающим методам близки так называемые безобразцовые испытания, сопровождающиеся небольшими нарушениями целостности материала, но не изделия в целом (например, измерение твердости), внешний осмотр, а также контроль параметров процесса сварки.

в

а

б г

Рис. 4.12. Дефекты сварных швов

а – непровар; б – смещение кромок; в – подрез шва;

г – отсутствие валика шва.

Другими сварочными дефектами являются трещины, поры, пустоты при нарушении технологического процесса сварки, а именно: нарушение режима нагрева, выделение газов из свароч­ной ванны при затвердении. Вследствие увеличения сварочного то­ка возникают прожоги, что бывает при сварке тонких листов. Недо­статочная сила тока или мощность горелки вызывают непровары. Из-за неравномерного разогрева или охлаждения изделий возникают искривления и коробления.

Основными дефектами паяных соединений являются пустоты и пористости, которые нарушают непрерывность шва и значительно ухудшают прочность соединения. Основной причиной появления этих дефектов является фнюс, который, разлагаясь выделяет газ, а его пузырьки остаются в соединении.

Качество соединений проверяют одним из следующих методов: внешней осмотр, люминисцентная дефектоскопия, цветная дефекто­скопия, механические испытания образцов, металлографический ана­лиз, испытание на межкристаллитную коррозию, магнитная дефекто­скопия, ультразвуковая дефектоскопия, просвечивание рентгеновскими лучами и гамма-лучами.

4.7.1. Внешний осмотр

Внешним осмотром проверяют качество поверхностей, размеры и качество сварных швов и клеевых соединений. Проверку произво­дят с использованием универсальных или специальных измерительных инструментов. При внешнем осмотре выявляют трещины, вмятины, непровары и другие грубые дефекты.

Кроме отклонений размеров при внешнем осмотре шва выявляют: трещины, выходящие на поверхность шва, а также основного металла в зоне термического влияния сварки; пористость наружной поверх­ности; смещение кромок при стыковке продольных и поперечных швов неравномерность высоты в ширины шва; раковины и вмятины на по­верхности листов, сваренных контактной сваркой.

Эти дефекты выявляют при помощи простейших оптических при­боров лупы или переносного микроскопа.

4.7.2. Люминисцентная дефектоскопия

Предназначена для выявления дефектов сварки или пайки, вы­ходящих на поверхность изделий. Этим методом проверяют изделия из металла, пластмасс и керамики. Сущность метода заключается в следующем. На проверяемую поверхность наносится раствор с флюорисцирующим веществом. В раствор входят бензин или бензол, керо­син, трансформаторное масло или вазелиновое масло и флюорисцирующий краситель. Затем изделие моют так, чтобы люминисцентная жидкость смылась только с поверхности детали, сушат и посыпают измельченным селикагелем, впитывающим в себя остатки люминисцирующего ве­щества, оставшегося в трещинах. Изделие облучают ультрафиолетовыми лучами. Выходящие на поверхность дефекты, заполненные люминисцирующей жидкостью, светятся ярким зеленоватым цветом.

4.7.3. Цветная дефектоскопия

Изделие погружают в жидкость, состоящую из керосина, масла и красной или красно-оранжевой краски. Через 5-10 минут изделие промывавают холодной водой и покрывают тонким слоем мелового раствора и сушат. Слой мела высыхает, впитывая в себя жидкость с кра­сящим веществом, которая в местах дефекта проступает вследствие капиллярности. Испытание сварных и паяных швов на непроницаемость производят керосином. С одной стороны на шов наносят водный раствор мела или каолина, а противоположную после высыхания 2-3 раза смазывают керосином. Дефекты обнаруживают по появлению жирных пя­тен на белой краске.

Керосином испытывают емкостные конструкции, работающие без давления. Емкостные конструкции, работающие под давлением, испытывают воздушно-аммалчной смесью, которую вводят под давлением в герметически закрытую емкость. На швы накладывают бумажные ленты, пропитанные 5 % - ным рас­твором азотнокислой ртути. Аммиак, проникая через трещины и поры, образует на ленте черные пятна. Вместо бумажных лент на шов можно наносить суспензию из порошка фенолфталеина, спирта и воды. При этом окраска получается красно-фиолетовая.

4.7.8. Механические испытания образцов

Механические испытания проводят в тех случаях, когда свар­ной шов, паяный или склеенный швы работают под нагрузкой. Образ­цы вырезают из контрольных пластин, изготавливаемых по той же технологии сварки, пайки и склеивания, что и основной стык.

Образцы испытывают на растяжение, загиб, усталость, чувстви­тельность материала шва к старению, твердость, ударную вязкость.

Стыковые швы из листа толщиной менее 2 мм испытывают на ударный разрыв, а точечную сварку и заклепки испытывают на срез.

Испытания проводят в соответствии с требованиями соответ­ствующих ГОСТов. Формы применяемых образцов показаны на рис.4.13.


а

б

в

д

г

Рис. 4.13. Образцы для механических испытаний: а – на растяжение; б – на ударный изгиб; в – на растяжение и изгиб; г – на испытание прочности точечной сварки; д – для проверки качества пайки.

Образцы для испытаний вырезают из пластин механической или газовой резкой.

4.7.9. Металлографические исследования

Металлографиче5ские исследования материалов проводят для соединений, работающих под давлением свыше 5 МПа (50 кгс/см2) с температурой нагрева более 450°С. В процессе исследования определяют сплошности швов, наличие трещин, пор, раковин, недоваров, шлаковых включений, структурный состав материала по зонам термического воздействия. Для проведения металлографического анализа изготавливают специальные шлифы. Различают - ма­кроскопические исследования (при увеличении от 30 до 50 раз) и микроскопические (при увеличении от 50 до 2000 раз).

4.7.10. Магнитная дефектоскопия

Этот метод применим к изделиям из ферромагнитных материалов, т.к. перед контролем они долины быть намагничены. Намагничивание осуществляется одним из 3-х методов: циркулярный, полюсный и комбинированный.

Метод контроля основан на улавливании местных магнитных по­токов рассеяния, образуюшихся над дефектными слоями. На намагни­ченное изделие (сварной или паяный шов) наносят ферромагнитный порошок. Дефектные места определяют по характеру распределения феррочастиц, которое фиксируется на ферропленке, расположенной между изделием и магнитом.

4.7.11. Ультразвуковая дефектоскопия

Существует 2 метода ультразвуковой дефектоскопии: фиксация местных ослаблений ультразвука при прохождении через дефектные места и обнаружение дефекта по отражению ультразвука от дефекта. Оба метода основаны на свойстве ультразвука ослабевать или отра­жаться на градицах раздела двух сред. Проходя через изделие, ультразвуковая волна встречает на своем пути препятствие в виде пор, трешин, шлаковых включений и теряет свою энергию или отра­жается от границы раздела сред (материал-пустота). Если дефекта нет, энергия при прохождении через все изделие не изменяется. При наличии дефекта энергия ультразвуковой волны перед входом в изделие и на выходе из него будет разной. При использовании вто­рого метода наличие дефекта определяется по разности пути про­хождения ультразвуковой волны. Если дефекта нет, то ультразвуковая волна отразится от границы раздела сред на выходе из изделия. При наличия дефекта отражение ультразвуковой волны произойдет внутри изделия, а путь, пройденный ультразвуковой волной, будет меньше. Это ука­зывает па наличие дефекта в изделии.