Смекни!
smekni.com

Строение металлов (стр. 40 из 48)

В настоящее время все шире используются методы бесконтактного распыления с использованием мощных импульсов тока, когда через твердый (в виде проволоки) или жидкий проводник (распыляемый материал) пропускается мощный импульс тока, и проводник мгновенно нагревается и распыляется, или воздействием электромагнитных полей, когда при пропускании электрического тока по струе расплава распыление осуществляется в виде взрыва проволок.

Производство порошков обработкой металлов резанием на практике используются очень редко. Порошки получают при станочной обработке ком­пактных металлов, подбирая такой режим резания, который обеспечивает обра­зование частиц, а не сливной стружки. При этом образующиеся отходы в виде крупной стружки целесообразно использовать для дальнейшего измельчения в шаровых, вихревых и других аппаратах, а мелкую стружку и опилки с величиной частиц порошка около 1 мм можно использовать для изготовления изделий без дополнительного дробления. В некоторых случаях применение этого метода для получения порошка является почти единственным. Прежде всего, это относится к тем металлам, которые очень активны по отношению к кислороду, особенно в состоянии высокой дисперсности. Например, по этому способу получают магниевый порошок.

6.2.2 Физико-химические методы получения порошков

К физико-химическим методам получения порошков относят:

- восстановление оксидов и солей;

- электролиз;

- диссоциация карбонилов;

- гидрометаллургический способ.

Восстановление оксидов и солей является одним из наиболее распро­страненных и экономичных способов, особенно когда в качестве исходного ма­териала используют руды, отходы металлургического производства (окалина) и другие дешевые виды сырья.

Восстановлением в техническом смысле этого слова, называют процесс получения металла из его химического соединения путем отнятия неметаллической составляющей (кислород, солевой остаток) при помощи вещества, называемого восстановителем. Процесс восстановления является одновременно и процессом окисления. Если исходное химическое соединение (оксид, соль) теряет неметаллическую составляющую или восстанавливается, то восстановитель вступает с ней во взаимодействие или окисляется.

В общем случае реакцию восстановления можно записать в виде

МеБ + Х ↔ Ме + ХБ

где Me - любой металл, порошок которого нужно получить;

Б - неметаллическая составляющая (кислород, солевой остаток и др.)

восстанавливаемого исходного химического соединения; X - восстановитель;

ХБ - химическое соединение восстановителя.

Стрелки означают, что в ходе реакции возможно повторное образование исходного соединения (МеБ) в результате взаимодействия полученного металла (Me) и соединения восстановителя (ХБ). Для оценки возможности протекания реакции восстановления необходимо сопоставить величины, характеризующие прочность химических связей в соединении металла (МеБ) и образующимся со­единении восстановителя (ХБ).

Количественной мерой указанных величин служит величина свободной энергии, высвобождающейся при образовании со­ответствующего химического соединения. Чем больше высвобождается энергии, тем прочнее химическое соединение. Поэтому реакция восстановления возможна лишь в случае, если при образовании соединения восстановителя (ХБ) выделяется энергии больше, чем при образовании соединения металла (МеБ).

Восстановителем может быть только то вещество, которое обладает боль­шим химическим сродством к неметаллической составляющей восстанавливае­мого соединения, чем получаемый металл. В порошковой металлургии в качестве восстановителя наиболее распространены:

- водород;

- оксид углерода (СО);

- конвертируемый природный газ;

- диссоциированный аммиак;

- эндотермический газ (эндогаз);

- твердый углерод (кокс, уголь, сажа);

- металлы.

Водород является одним из самых активных газов-восстановителей. В природе в свободном состоянии водород почти не встречается, и поэтому большое значение приобретают рациональные способы его промышленного производства. Практическое значение получили так называемый железо-паровой способ производства водорода и электролиз воды.

В железо-паровом процессе водород получают при обработке раскаленного (около 800°С) железа водяным паром по реакциям

Fe + H20 = FeO + H2

3FeO + H20 = Fe3042

Получаемый газ содержит до 98% водорода и имеет достаточно высокую стоимость, что ограничивает его применение в порошковой металлургии.

При получении водорода электролизом воды в качестве электролита ис­пользуются водные растворы щелочей (NaOH, КОН) или кислот (H2S04), так как чистая вода плохо пропускает электрический ток. При пропускании постоянного тока через такие растворы происходит разложение воды на ионы водорода (Н+) и ионы гидроксила (ОН-) по схеме Н2О→Н+ +ОН~

Ионы водорода перемещаются к катоду, где отдают свой заряд, превращаясь в атомы водорода. В результате на катоде выделяется газообразный водород. Ионы гидроксила отдают свой заряд на аноде, в результате чего на аноде образуется вода и кислород. Получаемый таким способом газ содержит не менее 99,8% водорода.

Применение водорода для целей восстановления сравнительно ограниченно из-за высокой его стоимости. Кроме того, необходимо помнить о взрывоопасности водорода и строго соблюдать при работе с ним правила техники безопасности.

Водородным восстановлением получают порошки вольфрама, молибдена, кобальта, железа, никеля и некоторых других сплавов.

Оксид углерода обычно получают газификацией малосернистого кокса или древесного угля с применением кислородного дутья по реакциям

С + О2 = СО2

СО2 + С = 2СО

Образующийся оксид углерода (СО) очищается от пыли, сернистых со­единений, углекислоты, влаги и после очистки содержит не менее 92% СО. Стоимость получаемого оксида углерода высока, поэтому для производства ме­таллических порошков восстановлением его практически не применяют.

Конверторный природный газ. Природный газ содержит 93 - 98% метана (СН4). Процесс конверсии заключается во взаимодействии метана с паром при температуре 900 - 11000С и в присутствии катализатора по реакции

СН4 +Н2О = ЗН2 +СО

Получаемый в промышленных печах конвертируемый газ содержит 75 -76% Н2, 22 - 23% СО. Он в 8 - 10 раз дешевле водорода и в зависимости от его

качества применяется для восстановления оксидов при производстве железного порошка, порошков среднеуглеродистых и легированных сталей, железонике-левых, железовольфрамовых и других сплавов.

Диссоциированный аммиак является дешевым и хорошим заменителем водорода. Разложение аммиака осуществляют в специальных реакторах (диссо-циаторах) при температуре 600 - 650 °С. Диссоциированный аммиак содержит 75%Н, и 25%N, и применяется в качестве восстановителя при производстве по­рошков кобальта, железа, никеля, вольфрама.

Эндотермический газ получают в результате сжигания природного газа или другого углеводородного газа при существенном недостатке воздуха с подводом тепла извне. Эндотермический газ (эндогаз) в последнее время находит широкое применение в порошковой металлургии, хотя обладает меньшей вос­становительной способностью по сравнению с водородом. Это объясняется тем, что он более чем в десять раз дешевле водорода и менее взрывоопасен.

Процесс неполного сжигания природного газа ведут при недостатке воздуха в две стадии. На первой стадии кислород взаимодействует с метаном по реакции

СН, +2О2 =СО2 +2Н2О

На второй стадии процесса избыточный метан реагирует с образовавшимся СО2 и Н2О по реакциям

СН4 + СО2 =2СО + 2Н2

СН42О = СО+ЗН2

Суммарный тепловой эффект реакций первой и второй стадий отрица­тельный, в связи с чем для поддержания процесса необходим дополнительный подвод тепла извне.

Эндогаз, получаемый из природного газа, содержит 18 - 20% СО, 38 — 40% Н2, около 1% С02, остальное N2. С применением эндогаза получают порошки железа и среднеуглеродистых сталей.

Твердый углерод при получении порошков восстановлением используется в виде кокса, древесного угля, сажи. Указанные материалы является сильными восстановителями, так как содержат 93 - 98% углерода. Существенным недос­татком этих материалов, используемых в качестве восстановителей, является то, что они содержат нежелательные примеси (сера, зола, влага), переходящие в порошок и ухудшающие его свойства.

Металлы. Процесс восстановления химического соединения металлом называют металлотермическим, основанным на большом сродстве металла-вос­становителя к кислороду или другому неметаллическому элементу соединения, чем восстанавливаемый металл. Высоким сродством к кислороду обладают кальций, магний, алюминий, натрий, калий, цирконий и бериллий. На практике для осуществления металлотермических реакций восстановления используют в основном кальций, магний, алюминий, натрий.

К металлам-восстановителям предъявляются требования, чтобы они не образовывали с получаемым металлом, сплавов и других соединений. Избыток восстановителя, а также побочные продукты реакции должны полностью отделяться от восстановленного металла.

Металлотермическим восстановлением получают порошки титана, тантала, ниобия, легированных сталей.

Электролиз. Среди физико-химических методов получения металлических порошков электролитический способ по промышленному распространению занимает второе место после восстановления.