Смекни!
smekni.com

Строение металлов (стр. 39 из 48)

Рис. 6.4. Схема планетарной центробежной мельницы

3 1 – шкив с обоймами; 2 – основание; 3 – кожух

Разлом материала осуществляется следующим образом. Приводится во вращение корпус-шкив, оси промежуточных зубчатых колес и обоймы. Закреп­лённые в обоймах барабаны вращаются вместе с корпусом-шкивом и одновре­менно вокруг своей оси. Во время вращения масса размольных шаров распола­гается около стенки барабана по сегменту, форма и положение которого не ме­няется во вращении. Кроме того, каждый шар движется по окружности, центром которой является ось барабана. Таким образом, сложное движение шаров, сопровождается их перекатыванием, приводит к интенсивному измельчению материала за счет истирания и ударного воздействия сталкивающихся друг с другом шаров и частиц материала. По сравнению с другими шаровыми мельни­цами размол в планетарных центробежных мельницах осуществляется интен­сивней в сотни раз.

Для измельчения в порошок пластичных материалов используются вихревые мельницы (рис. 6.5), в которых предложен процесс, основанный на том принципе, что разрушающие удары производят сами частицы измельчаемого материала. При этом устраняются обычные загрязнения материалом шаров и стенок мельницы.

Рис. 6. 5. Схема вихревой мельницы

1 - рабочая камера; 2 - пропеллеры; 3 - насос;

4 - отсадочная камера; 5 -приемная камера; 6 - бункер

Мельница состоит из рабочей камеры, в которой расположены пропеллеры или билы, вращающиеся в противоположных направлениях при высоких, но обязательно равных скоростях. При этом создаются два противоположно направленных воздушных или газовых потоков, которые увлекают за собой частицы порошка. Сталкиваясь друг с другом, частицы из­мельчаются. Измельчаемый материал загружают в бункер, откуда он поступает в рабочую камеру, где размалывается. В рабочую камеру насосом также подается под давление воздух или газ, с помощью которого измельченные частицы удаляются в приемную камеру. Скорость воздушного потока регулируется с та­ким расчетом, чтобы из рабочей камеры удалялись частицы определенных раз­меров. В приемной камере крупные частицы оседают на днище и возвращаются вновь в рабочую камеру, где подвергаются повторному измельчению. Мелкие частицы направляются в отсадочную камеру, откуда производится выгрузка.

В результате вихревого измельчения могут получаться очень тонкие и пи­рофорные порошки. В целях предохранения порошка от самовозгорания в ра­бочую камеру вводят инертный газ, к которому добавляют до 5% кислорода для образования на частицах защитных оксидных пленок.

Распыление и грануляция жидких металлов является одним из наиболее производительных методов получения порошков. Распыление расплава является относительно простым и дешевым технологическим процессом производства порошков металлов с температурой плавления до 1600 °С.

Сущность измельчения расплавленного металла состоит в дроблении струи расплава газом или водой при определённом давлении (распыление), либо ударами лопаток вращающегося диска (центробежное распыление), либо сливанием струи расплава в жидкую среду, например воду (грануляция).

Принципиально процесс распыления металлической струи потоком газа возможен по нескольким схемам. Распыление может осуществляться потоком газа, соосно обтекающим струю расплава, обтекающим потоком газа, направленным под некоторым углом к оси струи, и газовым потоком, направленным к оси струи под прямым углом.

Наиболее распространено распыление газовым потоком (рис. 6.6), при котором на свободно истекающую струю металлического расплава направлен под углом 60° к её оси кольцевой газовый поток, создаваемый соплами, охваты­вающими струю металла. В месте схождения всех струй газового потока про­исходит разрушение струи расплава в результате отрыва от неё отдельных капель.

Механизм разрушения струи металла очень сложен и полностью ещё не изучен. На размер и форму образующихся частиц влияют мощность и темпера­тура газового потока, диаметр струи, температура, поверхностное натяжение и вязкость расплава. Кроме того, большое влияние оказывает конструкция фор­суночного устройства. Например, установлено, что размер образующихся частиц уменьшается с повышением скорости истечения газа - энергоносителя из форсунки с расширяющимся соплом или при повышении давления дутья в фор­суночных устройствах с сужающимся соплом.

При повышении температуры дутья возрастает кинетическая энергия га­зового потока, что способствует дроблению струи расплава на мелкие частицы. Наиболее эффективно распыление при температуре газового потока, совпа­дающей с температурой расплава, так как вязкость и поверхностное натяжение при этом не претерпевают изменений в процессе дробления струи из-за отсут­ствия переохлаждения расплава. Однако создать такие условия при распылении расплавов, имеющих высокую температуру плавления (1500 - 1700 °С), очень сложно из-за трудностей нагрева газового дутья и значительного усложнения и удорожания распылительных установок.

Рис.6.6. Схема распыления жидкого металла газом

а - схема получения порошка; 1 - металлоприемник; 2 - форсуночное устройство; 3 - экран; 4 - вода; 5 - контейнер; б - схема форсунки; 1 - сопло; 2 - струя жидкого металла; 3 - струя газа

На размер частиц, получаемого порошка, влияет и диаметр струи расплава. Увеличение диаметра струи приводит к снижению количества мелких частиц в порошке, что связано с возрастанием массы расплава, поступающего в зону распыления в единицу времени. На практике, для расплавов с температурой плавления до 1000°С диаметр струи выбирают в пределах 5-6 мм, с тем­пературой плавления до 1300°С — 6 — 8 мм и при более высокой температуре плавления - 8 - 9 мм.

При заливке в металлоприёмник расплав должен иметь температуру на 150 — 200°С выше температуры его плавления, что обеспечивает стабильное истечение струи, так как понижение температуры расплава в металлоприёмнике приводит к повышению его вязкости и поверхностного натяжения, в результате чего снижается выход мелких фракций порошка. В современных установках распыления металлоприёмники выполняются с обогревом, позволяя поддержи­вать оптимальную температуру струи расплава.

Распыление струи расплава водой широко применяют в промышленности. Этот процесс отличается от распыления расплавов газом более высокой плотностью воды, что влияет на увеличение импульса и кинетической энергии потока воды. Высокая плотность воды обеспечивает также сохранение высоких скоростей энергоносителя на больших расстояниях от среза сопла, чем в случаях использования газовых потоков. Это позволяет в широких пределах изменять взаимное расположение струй расплава и воды, облегчая конструирование устройств для распыления.

Кроме того, при контакте водяной струи с расплавом неизбежен процесс интенсивного парообразования как вокруг струи расплава, так и вокруг каждой распылённой частицы. По этой причине распыление струи расплава осуществляется фактически не водой, а перегретым сжатым паром, образующимся в зоне контакта поверхностей воды и расплава.

В установках с центробежным распылением струя металла разрушается ударами лопаток вращающегося диска (рис. 6.7).

Рис. 6.7. Схема центробежного распыления жидкого металла

1 - металлоприемник; 2 - вода; 3 - диск с лопатками; 4 - порошок

Образующийся порошок вместе с водой, подаваемой под определенным давлением и по специальной кольцевой трубке, создающей из воды форму во­ронки, внутри которой находится струя жидкого металла, поступает в приёмник. Воронкообразное оформление водяного узла установки позволяет предохранить струю жидкого металла от преждевременного разрушения (грануляции) водой.

Величина частиц порошка зависит от числа ударов лопаток о струю, удельной подачи металла в камеру распыления и вязкости расплава. Изменяя число оборотов крыльчатки, которое может достигать 4000 об/мин, регулируют набор частиц в порошке по размерам.

Грануляция, как способ измельчения жидких металлов, издавна применяется для изготовления свинцовой дроби. При грануляции струю расплава сливают в воду, получая грубые порошки с размером частиц 0,5 - 1,0 мм и выше. Более мелкие фракции можно получать, если применять интенсивное размельчение струи расплава при помощи движущейся конвейерной ленты с последующим охлаждением капель металла в воде.

В любом из рассмотренных вариантов распыления порошок содержит обычно кислород в виде оксидов. Поэтому порошки, полученные распылением, подвергаются восстановительному отжигу, целью которого является не только восстановление оксидов, но улучшение технологических свойств порошка (прессуемость, спекаемость и т.д.).